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Abstract

Statistical analysis of data on supercentenarians revealed that the hu-
man force of mortality is flat after age 110. This implies that either
human mortality levels off or it abandons the observed plateau after
a certain age. We consider a general model introduced by Finkelstein
and Esaulova (2006) which represents a mixture of a baseline failure
distribution and a mixing (frailty) distribution that accounts for un-
observed heterogeneity among individuals. In this article we describe
under certain assumptions a class of frailty distributions that implies
the asymptotic behavior of the mixture hazard rate of this general
model.

Introduction

The International Database of Longevity (IDL 2010) offers detailed infor-
mation on thoroughly validated cases of supercentenarians. Gampe (2010)
used these data to estimate the human force of mortality after age 110. Her
analysis revealed that human mortality after age 110 levels off regardless of
gender. Time trends in supercentenarian mortality between earlier and later
cohorts do not play the slightest role, too. Human mortality is flat at a level
corresponding to a 50% annual probability of death (Gampe 2010; Robine
et al. 2005). This finding raises at least two important questions that this
article addresses: i) given that human mortality becomes flat after age 110,
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what is the underlying model?; ii) how sure can one be that mortality will not
drop down to zero at later ages, at which there are still no officially recorded
survivors, and how would this change the underlying model?
Steinsaltz and Wachter (2006) studied the inverse problem for a proportional
hazards frailty model. Assuming that the baseline hazard is asymptotically
equivalent to a Gompertz curve and the mixing distribution behaves like a
power function zα, α > −1, in a neighborhood of zero, they prove an Abelian
theorem that the resulting mixture hazard rate is asymptotically flat. Finkel-
stein and Esaulova (2006) studied a more general survival model, which has
as special cases the two most widely used survival models in demography:
the proportional hazards and the accelerated failure time model. Assum-
ing the same behavior of the mixing distribution for z → 0+, they derive
independently the asymptotic result of Steinsaltz and Wachter (2006) and,
moreover, prove that the mixture hazard rate for the accelerated life model
tends to zero with time.
Steinsaltz and Wachter (2006) proved also a Tauberian theorem for the pro-
portional hazards model, i.e. assuming that the hazard rate of the mixture
is asymptotically flat and the underlying mortality distribution is undistin-
guishable from a Gompertz one with time, they described the set of frailty dis-
tributions that could produce this leveling-off. Thus, Steinsaltz and Wachter
(2006) answer question i) in the case of proportional hazards.
If a proportional hazards model produces a mortality plateau and an acceler-
ated failure time model results in a mortality rate that approaches zero, can
we conclude that if we observe flat mortality at oldest-old ages, the model
is necessarily a proportional hazards one? In general, no because Abelian
theorems do not provide information on the speed of convergence of the mix-
ture failure rate to its asymptotic value. Thus, we are not sure whether the
plateau after age 110 is the eventual leveling-off of the force of mortality,
or it is merely an interval of mortality constancy which could be followed,
for instance, by its decrease to zero. That is why this article studies the
model of Finkelstein and Esaulova (2006), which is a generalization of both
proportional hazards and accelerated failure time models.

Preliminaries

Standard survival analysis models incorporate a baseline mortality law, a
term that accounts for observed heterogeneity (usually a linear predictor of
covariates), and a scheme by which these two are linked together. For ex-
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ample, factors may affect individual hazard multiplicatively, thus producing
a proportional hazards model. They may instead preserve the same mor-
tality pattern for everyone, but assign individual-specific time scaling, thus
producing an accelerated failure time model. These and other standard sur-
vival analysis models can be extended to account for unobserved heterogene-
ity by introducing a random variable Z ≥ 0, called frailty, that captures
individual-specific susceptibility to experiencing the event of interest, in de-
mography usually death (Vaupel et al. 1979). Frailty models are by their
nature proportional hazards models as frailty is assumed to act multiplica-
tively on individual hazard rates. This paper focuses on a wider class of
models, formulated first by Finkelstein and Esaulova (2006), which includes
as special cases the two most commonly used survival models in demography,
epidemiology, medicine, biology, and engineering – the proportional hazards
model and the accelerated failure time model.
Let T ≥ 0 be a lifetime random variable characterized by a survival function
S(t) or equivalently by a cumulative hazard H(t). Suppose S(t) is indexed
by a random variable Z ≥ 0 with a pdf π(z):

S(t, z) := P (T > t |Z = z) ≡ P (T > t | z)

where P (A) denotes the probability of event A. Z, often called frailty in
proportional hazards models, accounts for variability in individual predispo-
sition to experiencing the event of interest. In proportional hazards settings
Z is a multiplicative factor acting on individual hazard, which means that
the bigger Z (i.e. the “frailer” an individual), the higher the corresponding
hazard rate.
Suppose the pdf f(t, z) = −S ′t(t, z) exists and the corresponding hazard is
denoted by µ(t, z), i.e.

µ(t, z) =
f(t, z)

S(t, z)

Then the mixture survival function and pdf, i.e. the survival and density
functions of the population, will be defined as

Sm(t) =

∞∫
0

S(t, z)π(z)dz , fm(t) =

∞∫
0

f(t, z)π(z)dz
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Then the mixture failure rate, i.e. the hazard rate of the population, will be
given by

µm(t) =

∞∫
0

f(t, z)π(z)dz

∞∫
0

S(t, z)π(z)dz

Mixture failure rates behave asymptotically as a positive constant in Gom-
pertz proportional hazards frailty models (Finkelstein and Esaulova 2006;
Steinsaltz and Wachter 2006) and as a decreasing to zero function in ac-
celerated failure time models (Finkelstein and Esaulova 2006) if the mix-
ing distribution’s probability distribution function π(z), z ≥ 0, is defined as
(Finkelstein and Esaulova 2006)

π(z) = zαπ1(z), (1)

where α > −1 and the function π1(z) is (i) bounded in [0,+∞), (ii) contin-
uous and nonvanishing at z = 0. The failure distribution is characterized by
a cumulative hazard

H(t, z) =

t∫
0

µ(x, z)dx = A(zφ(t)) ,
dA(s)

ds
> 0,

dφ(t)

dt
> 0 (2)

As the cumulative hazard H(t, z) is always a differentiable non-decreasing
function equal to zero at t = 0, it is assumed that the functions A(·) and
φ(·) are differentiable, as well as A(zφ(0)) = 0. Finkelstein and Esaulova
(2006) introduce a slightly stronger assumption about A(·) and φ(·) (increas-
ing instead of merely non-decreasing), which means that lim

s→+∞
A(s) = +∞

and lim
t→+∞

φ(t) = +∞. For e−A(zφ(t)), which is the survival function of the

mixture lifetime distribution, Finkelstein and Esaulova (2006) introduce an
additional assumption, namely the existence of its (α + 1)-st moment

∞∫
0

e−A(s)sα ds <∞ (3)
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This indicates that the mixture lifetime distribution is not “too heavy-tailed”.
Thus, assuming (1), (2), and (3), (Finkelstein and Esaulova 2006) proved that

µm(t) ∼ (α + 1)
ϕ′(t)

ϕ(t)
t→∞ (4)

where a(t) ∼ b(t) denotes lim
t→∞

a(t)/b(t) = 1. Eq. (4) means that the asymp-

totic behavior of the mixture failure rate depends solely on the behavior of
the mixing distribution in the neighborhood of zero and the derivative of the
logarithm of the scaling function ϕ(t). Thus for the Gompertz proportional
hazards model, i.e. A(s) ≡ s, ϕ(t) = H(t) = a/b (exp(bt)−1) in (2), the mix-
ture failure rate tends to a constant: µm(t) ∼ (α + 1)b ≡ const. Note that
this result is true for any mortality distribution such that µ(t)/H(t) → b
as t → ∞ (Steinsaltz and Wachter 2006). We will call the class of such
distributions “Gompertz-like” as their relative derivative is asymptotically
constant.

The Main Finding: A Tauberian Theorem for the Mixture Failure Rate

The mortality plateau observed by Gampe (2010) is independent of gender
and time trends in supercentenarian mortality between earlier and later co-
horts. As univariate frailty models are not identifiable in the absence of
covariates (Elbers and Ridder 1982; Heckmann and Singer 1984; Hoem 1990;
Yashin et al. 1994), we have to specify the underlying mortality distribution
if we want to draw inference about the mixing distribution. We will assume
that the cumulative hazard rate for individuals with frailty Z = z is given
by (2). Then a class of frailty distributions that produce a mixture hazard
rate with asymptotics (10) is given by the following

Theorem 1. Let the cumulative hazard rate H(t, z) is given by (2). Suppose
that the mixture failure rate µm(t) satisfies

µm(t) ∼ c
ϕ′(t)

ϕ(t)
> 0 t→∞

Assume that the mixing distribution has a probability density function π(z)
such that ∀z ≥ 0
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zπ′(z)− (c− 1) π(z) ≥ 0 or zπ′(z)− (c− 1) π(z) ≤ 0 (5)

and in addition π(z) is differentiable and non-vanishing in a neighborhood of
z = 0. Then π(z) is the solution to the equation

lim
z→0+

[zπ′(z)− (c− 1)π(z)] = 0 (6)

The proof of Theorem 1 is presented in the Appendix. Note that

π(z) ∼ C zc−1 z → 0+ , (7)

where C > 0 is a constant, is one of the solutions in (6). This is exactly the
class of distributions (1) specified in the Abelian theorems of Finkelstein and
Esaulova (2006) and Steinsaltz and Wachter (2006).
A special case of Theorem 1 is the Tauberian theorem of Steinsaltz and
Wachter (2006). The proof of the latter is based, though, on the asymp-
totic properties of the Laplace transform, which plays an important role in
proportional hazards models: µm(t) is the Laplace transform of the mixing
distribution, calculated for the baseline hazard H(t) (Hougaard 1986). In
(2), however, the mixture failure rate µm(t) cannot be expressed, in general,
in terms of the Laplace transform. That is why the proof of Theorem 1 is
based solely on the properties of limits and integrals.
Theorem 1 is an inverse (Tauberian) theorem to the Abelian theorem by
Finkelstein and Esaulova (2006). As Tauberian theorems are by default
weaker than their Abelian counterparts, Theorem 1 imposes an extra condi-
tion (5). It postulates that the density of the mixing distribution π(z) should
be such that zπ′(z)− (c− 1)π(z) has a non-alternating sign. We will explore
in the following section how restrictive this assumption can be by looking
at several popular mixing distributions: the Gamma distribution (Vaupel
et al. 1979), the log-normal distribution (McGilchrist and Aisbett 1991), the
compound Poisson distribution (Aalen 1992), and the inverse Gaussian dis-
tribution.

Examples of Mixing Distributions

The Gamma distribution with unit mean and variance σ2 = 1/k > 0 was
introduced by Vaupel et al. (1979) for studying univariate frailty models. Its
density
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fΓ(z; k) =
kk

Γ(k)
zk−1e−kz

satisfies the second inequality in (5) if

c ≥ k

This is consistent with (7), as for fΓ(z; k) we have c = k. As a result,
the Gamma distribution is a plausible mixing distribution for the general
model (2). If we assume that the mixture failure rate µm(t) is asymptotically
constant, i.e. that ϕ′(t)/ϕ(t) ∼ b ≡ const, then this plateau results from a
Gamma-Gompertz or a Gamma-“Gompertz-like” mixture model.
The log-normal distribution with a location parameter m ∈ R and a squared
scale parameter σ2 > 0 was used in survival models by McGilchrist and
Aisbett (1991). If we substitute its density

flogN(z;m,σ2) =
1

zσ
√

2π
exp

{
−(ln z −m)2

2σ2

}
in the right-hand side of (5), then we will get values of opposite signs before
and after z = exp{m−σ2c}. As a result (5) is not fulfilled for the log-normal
distribution. Thus the latter cannot be picked up as a mixing distribution in
(2).
The compound Poisson distribution, introduced by Aalen (1992), is generated
by Gamma variables, i.e. a compound Poisson random variable Z is defined
as

Z =


0 N = 0

N∑
i=1

Zi N > 0
, (8)

where N is a Poisson random variable and Z1, . . . , ZN are mutually indepen-
dent Gamma random variables that are also independent of N . This model
is constructed in such a way that its Laplace transform could be easily calcu-
lated. It provides a generalization of the three-parameter model in Hougaard
(1986). The density of the Gamma-generated compound Poisson distribution
can be explicitly given by
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fCPois(z;λ, α, δ, γ) = fPois(0;λ) · exp

{
− α

δ(α− 1)

}
+ (1− fPois(0;λ)) ·

· exp

{
−α
δ

(
z

γ
+

1

α− 1

)}
· 1

z

∞∑
k=1

(α/δ)kα(z/γ)k(α−1)

k! Γ(k(α− 1)) (α− 1)k

(Aalen 1992), where α, δ ≥ 0, λ, γ > 0, and fPois( · ;λ) is the density of the
Poisson distribution. However, it is more convenient in this case to work with
the Laplace transform of fCPois(z;λ, α, δ, γ). We will check (5) by applying
the Hausdorff-Bernstein-Widder theorem (Widder 1946), which states that
a function is non-negative if and only if its Laplace transform is monotone.
The Laplace transform L of fCPois(z;λ, α, δ, γ) is

L
[
fCPois

]
(s) = exp

{
α

δ(1− α)

[
1−

(
1 +

δγ

α
s

)1−α
]}

and the Laplace transform of zf ′CPois(z;λ, α, δ, γ) is

L
[
zf ′CPois

]
(s) = −L

[
fCPois

]
(s)− sL′

[
fCPois

]
(s)

Differentiating L
[
zf ′CPois

]
(s)− (c− 1)L

[
fCPois

]
(s) with respect to s, we

get that this function is monotone if and only if

c ≤ δγ − 1 (9)

This is the necessary and sufficient condition for a distribution from the
Gamma-generated compound Poisson family to be a suitable distribution for
model (2). Note that the gamma distribution, which is a special case of (8)
when N = 1, satisfies (9).
Finally, the inverse Gaussian distribution with parameters µ, λ > 0 has a pdf

fInvGauss(z;µ, λ) =

√
λ

2πz3
exp

{
−λ(x− λ)2

2µ2x

}
which satisfies (5) for all values of µ, λ, c > 0.
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Conclusion

This paper aims at answering two questions: i) if mortality levels off, what
frailty distributions imply this result; and ii) if mortality does not eventually
level off, what can we say in this case about the underlying frailty distri-
bution. We study a general mixture model, proposed by Finkelstein and
Esaulova (2006) which includes as special cases the proportional hazards and
the accelerated failure time models. The latter cannot produce a plateau as
its mixture hazard rate tends to zero. As a result, if mortality gets flat at
oldest-old ages, the underlying model can be proportional hazards or some
other, excluding the accelerated failure time model. In the case of propor-
tional hazards, the mortality distribution is ”Gompertz-like” and the frailty
distribution is given either as in Steinsaltz and Wachter (2006), or by (6).
If the model is not proportional hazards, then we can still classify the plau-
sible mixing distributions by (6). Among the popular distributions used to
describe frailty, the ones that satisfy (6) are the Gamma, the compound
Poisson distribution with parameters in accordance with (9), and the inverse
Gaussian distribution.
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Appendix: Proof of Theorem 1

The mixture failure rate µm(t) can be expressed as a ratio of two integrals:

µm(t) = −

∞∫
0

S ′(t, z)π(z) dz

∞∫
0

S(t, z) π(z) dz

= −
ϕ′(t)

∞∫
0

e−A(zϕ(t)) A′(zϕ(t)) z π(z) dz

∞∫
0

e−A(zϕ(t))π(z) dz

(10)

The integral in the numerator of (10) reduces to

−
∞∫

0

e−A(zϕ(t))A′(zϕ(t)) z π(z) dz = − 1

ϕ2(t)

∞∫
0

e−A(s) A′(s) s π

(
s

ϕ(t)

)
ds =

=
1

ϕ2(t)

 ∞∫
0

e−A(s) π

(
s

ϕ(t)

)
ds+

1

ϕ(t)

∞∫
0

e−A(s) s π′
(

s

ϕ(t)

)
ds


and the integral in the denominator of (10) can be expressed as

∞∫
0

e−A(zϕ(t))π(z) dz =
1

ϕ(t)

∞∫
0

e−A(s) π

(
s

ϕ(t)

)
ds

The asymptotic result for µm(t)

µm(t) ∼ c
ϕ′(t)

ϕ(t)

can be rewritten as

1
ϕ(t)

∞∫
0

e−A(s) s π′
(

s
ϕ(t)

)
ds

∞∫
0

e−A(s) π
(

s
ϕ(t)

)
ds

∼ c− 1

which is equivalent to
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∞∫
0

e−A(s)

[
s

ϕ(t)
π′
(

s

ϕ(t)

)
− (c− 1) π

(
s

ϕ(t)

)]
ds ∼ 0 (11)

As the integrand is either a non-positive or a non-negative function for all s,
(11) implies that

lim
t→∞

[
s

ϕ(t)
π′
(

s

ϕ(t)

)
− (c− 1) π

(
s

ϕ(t)

)]
= 0

Substituting back z := s/ϕ(t) and solving the resulting differential equation
completes the proof of the theorem. Q.E.D. �
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