
“Achieving closure”: improving the estimation
of life expectancy for small populations

Michael P. Grayer

31st December 2009

Department of Geography, Queen Mary University of London, Mile End Road,
London E1 4NS. Email: m.p.grayer@qmul.ac.uk

Abstract

Life expectancy is a useful indicator of mortality for policy-makers, though
its calculation for small populations is problematic. In the UK, two technical
reports, one from the Office of National Statistics (ONS), and the other from
the South East Public Health Observatory (SEPHO), were commissioned to in-
vestigate life table methods applied to small populations. As a result, the ONS
published “experimental” life expectancy indicators following their recommen-
dations, and continue to do so. However, some of the life expectancy estimates
produced by this methodology are implausibly high.

This paper attempts to address a key reason why the current methodology
is prone to error by examining a specific area of the life table: the method of
closing the table. The applicability of the current method to small populations
is critically assessed, with particular attention paid to how small numbers of
deaths occurring in the final age band lead to implausibly long survival times
being estimated.

Two alternative methods of closing the life table are suggested. The first
comes from the literature (Silcocks, 2004). The other is proposed here. This
method uses a Brass relational model to extrapolate survivorship beyond the
start of the final age interval, allowing for a smoother transition from the rest
of the life table until its eventual culmination. The three methods are compared
using empirical data: deaths and population estimates for 625 small areas (elec-
toral wards) in London, for the years 2001-05. The Brass extrapolation method
reduces the skew in life expectancy estimates seen when using the standard
method, though the method appears to work better for males than for females.
Reasons why this may be the case, and possible improvements, are suggested.

1 Introduction

1.1 Context of the study

Life expectancy, which is defined as the average length of time a new-born baby
in a given population could expect to live if it experienced the same age-specific
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mortality rates as prevailed at the time of their birth, is arguably the most readily
recognised measure of population mortality among policy-makers and the general
public (Gardner and Donnan, 1977; Raleigh and Kiri, 1997; Veugelers and Horni-
brook, 2002; Williams et al., 2005). Though in widespread use at the national level,
its use at the sub-national level to make comparisons of mortality between areas is
less common. Measures such as the age-standardised mortality rate (ASR) or stan-
dardised mortality ratio (SMR) are more commonly used. However, it is argued that
life expectancy is a more useful indicator of mortality for policy-makers because it
is measured in tangible, concrete, quantifiable units (Silcocks et al., 2001; Veugelers
and Hornibrook, 2002). Indeed, as part of the UK government’s policy on reducing
social health inequalities, in 2001 a target was set with the aim “by 2010 to reduce by
at least 10 per cent the gap between the fifth of areas with the lowest life expectancy
at birth and the population as a whole” (Department of Health, 2001). However, a
drawback of life expectancy compared with standardised rates is that it is fairly com-
plex to calculate, requiring the use of life table methods.

The Office for National Statistics (ONS) established the Neighbourhood Statis-
tics Programme in 2000 with the goal of increasing the availability of neighbour-
hood level statistics, thus addressing “significant gaps in the information required
for evidence-based policy making” (Office for National Statistics 2006). The devel-
opment of life expectancy indicators for electoral wards during the course of this
programme was regarded as “high priority” (Williams et al., 2005). This, however,
represented a methodological challenge as the populations of electoral wards are
far smaller than the recommended minimum size required for calculating life ex-
pectancy: in the United States, for example, the National Center for Health Statistics
requires a minimum of 700 deaths for an estimate to be considered “stable”. This
implies a minimum population of 70,000 persons per administrative unit assuming
crude death rates of 1% (National Center for Health Statistics, 1987, 1998; Cai, 2005).
By contrast, typical electoral wards have populations of between 5,000 and 10,000
persons, and in remote parts of the UK, the population of these geographic units
was counted at approximately 1,000 persons (at the time of the 2001 census). Even
after the culmination of the Neighbourhood Statistics Programme in 2006, during
which two technical reports on the methodology for calculating life expectancy for
small populations were published, one by the ONS (Toson and Baker, 2003) and one
by the South-East Public Health Observatory (SEPHO) (Williams et al., 2005), small-
area life expectancy methodology is still considered “experimental”.

This paper investigates the current “experimental” methodology, in particular
identifying a component of the methodology which was largely overlooked by both
reports—how the life table should be closed. An alternative method of closing the
life table is proposed, and compared with the standard method and another method
proposed specifically for small populations identified in the literature (Silcocks, 2004).
Empirical data from electoral wards in London for the years 2001-06 are used to
demonstrate the validity of these methods in practical use, rather than with simu-
lated data.
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Shaded area: Life expectancy = 75.9 years

Figure 1: Survivorship curve of England males, 2000-02

1.2 Abridged life tables and life table closure

Before exploring the literature on the application of life table methods to small pop-
ulations, the abridged life table method, as applied in general, is briefly described.

Calculating a life expectancy for a fixed point in time (as opposed to a cohort of
births) requires the analyst to construct a hypothetical cohort of an arbitrary num-
ber of persons, and apply to it age-specific mortality rates from the population of
interest. In this way, it is possible to generate a curve, the survivorship function, de-
picting the theoretical proportion of the hypothetical cohort surviving to different
ages (in demographic notation, this is denoted by lx . An example of a survivorship
function is illustrated in Figure 1; this example shows survivorship of a hypothetical
cohort of 100,000 persons based on age-specific mortality rates for males in England
during 2000-02.

The total number of person-years lived by the hypothetical cohort (demographic
notation Tx ) is represented by the area under the curve from age x onwards. Life ex-
pectancy (demographic notation ex ) is derived by dividing this total by the number
of survivors to age x; it is the average survival time past that age. Since the num-
ber alive at birth in our hypothetical cohort is arbitrary and fixed, life expectancy at
birth, our outcome of interest, can be thought of as represented by the area under
the whole curve.

In practice, however, it is not possible to get reliable mortality data for single
years of age for small areas because the numbers of people at each age are so small.
Not only does this raise questions of instability, there are issues with respect to non-
confidentiality; data are unavailable due to the possibility that individuals may be
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identifiable. In this case, mortality rates for five-year (or in some cases ten-year)
age-groups are used instead, and an abridged life table constructed. For five-year
age-groups, the survivorship function is derived for ages 1, 5, 10, 15, and so on
up to an arbitrarily chosen old age and the remainder of the function is derived
by some method of interpolation, so as to determine the contribution to the total
number of years lived by each five-year “slice”. The Chiang method (Chiang, 1968),
which determines each age-group’s contribution using a term to represent the aver-
age length of time lived during the interval by those who die (denoted by ax ), is the
most common method for doing this, and is the one recommended by both Toson
and Baker (2003) and Williams et al. (2005). Conventionally, deaths are assumed to
occur evenly throughout the time period (ax = 0.5), with the exception of deaths un-
der one year, where the majority of deaths occur within the neonatal period, within
28 days of birth. Here, ax = 0.1 is conventionally used for developed-world popula-
tions (Newell, 1988).

Vallin and Caselli (2006) note two distinct problems faced by demographers in
determining rates of mortality at the oldest ages. The first problem, they note, re-
lates to the quality of empirically collected mortality data at old ages; the ages of
the elderly are in many cases inaccurately reported, either exaggerating very old
ages (Mazess and Forman, 1979; Retherford and Mirza, 1982; Rosenwaike and Stone,
2003) or “heaping” of reported ages on numbers ending in zero or five (Myers, 1940).
The second problem relates to the fact that, as cohort members die out, mortality
rates of the very elderly become inevitably based on observations of a very small
number of people, making probability calculations derived from them less justifi-
able based on the law of large numbers. Vallin and Caselli note further that “this
phenomenon naturally occurs earlier among men than among women, owing to
excess male mortality” (Vallin and Caselli, 2006, p.121).

As a result of these problems, at some point the life table must be interrupted
and some method for closing the life table be employed. The standard method is
that proposed by Chiang (1968), where the number of survivors are divided by the
mean mortality rate to determine the total survival time after the point at which the
life table was interrupted. This method leads to the usage of terms such as “open-
ended age group” to denote the end portion of the life table after the point at which
it was interrupted.

1.3 Previous work

A number of studies have been conducted to propose solutions to the difficulties en-
countered in estimating life expectancy for use in comparisons of mortality between
small populations. Silcocks et al. (2001) suggested that the sampling distribution
of life expectancy was approximately normal, and that as a result life expectancy
could be used for mortality comparisons, and was better for illustrative purposes
than SMR. The authors also noted, however, that the formula for variance of life
expectancy (and thus standard deviation and confidence intervals) were more com-
plex. They also observed that the age at which the final age-group begins affected
the calculation of life expectancy. They concluded that its lower bound should be as
high as possible to avoid conflating differences in age structure among the oldest-
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old. However, the assumptions made in constructing their abridged life tables dif-
fered from the standard methodology as described by Chiang (1968).

Two technical reports evaluating methodological options for making routine es-
timates of life expectancy at the electoral ward level have been published by UK or-
ganisations. The first (Toson and Baker, 2003) was commissioned by the Office for
National Statistics (SEPHO); the second (Williams et al., 2005) was commissioned by
the South East Public Health Observatory (SEPHO).

The main body of both reports was a comparison between the abridged life-
table methods proposed by Chiang (1968) and Silcocks et al. (2001). Both reports
came up with similar conclusions regarding the most appropriate method for mak-
ing point estimates of life expectancy: the Chiang method was considered the most
accurate in both cases. Both papers also concluded that the minimum population
threshold for reasonably reliable estimates of life expectancy to be made should be
5,000 persons, and prescribed a set of workarounds to account for instances when
zero counts in either the deaths or population estimates caused the life expectancy
calculation to fail. However, the reports made different conclusions as to the best
method for calculating variance of life expectancy, with the difference being mani-
fest in the method for estimating the contribution to overall variance made by the
final age interval.

Life expectancy estimates at the electoral ward level for all wards in England and
Wales for the period 1999-2003 were published as “experimental” data (Office for
National Statistics, 2006), following the methodology suggested by Toson and Baker
(2003). Five years of data were aggregated to ensure that the minimum threshold
of 5,000 person-years at risk was met in all wards. Life expectancies for both sexes
combined were published for all wards; life expectancy disaggregated by sex could
not be calculated for wards with very small populations where gender-specific pop-
ulations did not meet the minimum threshold so were only estimated for a subset of
wards.

Despite being published with the caveat that the data were estimated using an
experimental methodology, and being accompanied by a report detailing the limi-
tations of the data, a number of policy papers, keen to present life expectancy data
for small areas, cite the ONS small-area life expectancy estimates with little or no
mention of their being “experimental” (Mindell et al., 2004; Bailey and Walrond,
2005), and a number of papers have uncritically used the experimental method-
ology to produce life expectancy estimates for neighbourhoods in other countries
(New Zealand Ministry of Health, 2005; Hogstedt et al., 2006; Huong et al., 2006).

Before moving on to other studies, several other findings from the Williams et al.
(2005) report are of relevance to this paper; these findings were published as papers
in their own right in the Journal of Epidemiology and Community Health (Eayres
and Williams, 2004; Williams et al., 2004). The first concerns an investigation on the
effect of overall population size and lower-bound for the final age-interval on life ex-
pectancy and its standard error Eayres and Williams (2004). The authors noted that
as lower-bound was raised, both life expectancy and standard error became more
skewed, and that as population size decreased, life expectancy retained its accuracy
but standard error became more skewed. They noted that the distribution of esti-
mated survival time within the final age-interval was skewed, observing:
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“The right hand tail becomes stretched, and as population size de-
creases, the skewing of the transformed survival time distribution in-
creases, shifting the distribution mean further and further to the right.
This results in an overestimate of the underlying survival time, and con-
sequently the LE [life expectancy].”

However, the authors failed to note that this was distinct from other age-intervals,
suggesting:

“Similar effects can be expected in the other, finite, age intervals where
the years of life lived during the interval is related to the probability of
dying (Chiang) or probability of survival (Silcocks), both of which are
transformations of the mortality rate Mi . ”

Silcocks (2004) revisited this problem, suggesting an alternative formula for estimat-
ing mean survival time in the final age-group. The proposed method works by mul-
tiplying the Chiang estimate for mean survival time by a “shrinkage factor”. This
is a number between 0 and 1, and moves further from 1 as the number of deaths
upon which the original estimate was based decreases. This method, as well as the
original Chiang method, is described in more detail in Section 3.2.

The other relevant observation arising from the report is one concerning the po-
tential for local geographic factors to confound life expectancy within small, con-
tiguous geographic units (Williams et al., 2004). The factor considered by the au-
thors was the location of nursing homes, based on findings from a previous study of
geographical differences of mortality within the borough of Croydon (Williams et al.,
1995). Here it was observed that the mortality rates of nursing home residents were
higher than their same-age counterparts who remained in private accommodation,
and that the effect of this was to negatively bias life expectancy in wards contain-
ing a high number of nursing home residents. The authors suggested discounting
deaths of nursing home residents in order to mitigate against the effects of this bias.
However, there are two drawbacks of this. The first is that the bias is only considered
to act in one direction, and doesn’t adjust life expectancy in wards with no nurs-
ing homes where elderly residents automatically migrate out of a ward to move to
a nursing home. The second is that no distinction is drawn between nursing home
residents who previously lived in the same ward and those who moved from another
ward to get there.

Other studies have investigated this phenomenon. Manuel et al. (1998) sug-
gested that this effect was minimal based on a correlation of mortality in young ages
with old ages. However, the strength of the correlation was not particularly strong
(0.554 Pearson correlation coefficient; no p-value given) and even so, the choice of
groups to act as the two variables in the correlation was rather unusual, with no
justification given as to why they should accurately represent young-age and old-
age mortality. A more satisfactory analysis is offered by Veugelers and Hornibrook
(2002), who recoded nursing home deaths by place of previous residence, compar-
ing the life expectancy estimates produced with those without any recoding. Differ-
ences of up to a year of life expectancy were found. However, this study was con-
ducted in Canada, where data on previous residence are available. These data are
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sadly not collected universally, for example, data on previous residence of nursing
home residents are not available in the UK (Williams et al., 2004).

A further contribution to the development of small-area life expectancy estima-
tion was made by Scherbov and Ediev (2009). Here, it was observed that the reliabil-
ity of life expectancy estimates not only depended on population size but also on the
age-structure of the population. Thus a weakness of the previous papers emerges:
simulations were conducted based solely on a single population age structure. Thus
while mortality levels vary from area to area and we are principally concerned with
these, we cannot ignore the fact that local factors affect the age-composition of a
small area such as an electoral ward or census district as well. The “nursing homes
problem” described above is an example of this. This question is also salient when
considering life expectancy disaggregated by sex, as the population structure of the
female population differs from that of the male population, particularly at old ages.

Thus, at present, a number of problems remain unsolved. Though “5,000 person-
years” is now commonly accepted as a threshold for reliable life expectancy esti-
mates by policy-makers, we don’t yet know how local differences in population age-
structure affect the validity of this generic rule. The problem of skewness in the final,
open-ended, age interval still remains, and is an important hurdle to overcome if it is
hoped that reliable life expectancies for even smaller populations can be obtained.
Finally, previous studies have used simulated data, in most cases only conforming
to a single age-structure; Scherbov and Ediev (2009) is an exception. The present
study uses empirically observed data.

With the exception of Silcocks (2004), no studies have been conducted investi-
gating the effect of different methods of life table closure on life expectancy esti-
mates for small populations, despite there being many proposed options for larger
populations (Vallin and Caselli, 2006). Here, an alternative method is proposed,
based on the relational life table method proposed by Brass (1971). Rather than ex-
pressing survival after the point of interruption as a single fraction, it is proposed to
extrapolate survival for the oldest-old based on survival rates at preceding ages and
known survivorship patterns among the oldest-old taken from a larger population.

2 Aims

The aims of this study are as follows.

1. To improve the reliability of life expectancy estimates for small populations by
considering alternative options for closing the life table. Two alternatives are
considered: the “shrinkage factor” method proposed by Silcocks (2004) and
extrapolation of survival using a Brass relational model as outlined above.

2. To produce estimates of life expectancy and other indicators of mortality for
625 geographical units (hereafter referred to simply as “wards”) in London: the
624 electoral wards that comprise the 32 boroughs of Greater London, along
with the City of London taken as a whole. The wards range in size from ap-
proximately 5,000 to 18,000 persons.
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3. To consider the effect of estimating life expectancy separately for males and
females, and whether the methodology should differ by sex, considering the
differences in age-structure.

3 Methods

3.1 Setting and data

Mid-year population estimates and annual death counts were obtained from ONS
for all 625 wards London for 2001-2006. Population estimates and death counts were
disaggregated by sex and also by age-group, of which there were nineteen: under 1
year, 1-4 years, 5-9 years, ..., 80-84 years, 85 years and over.

In this study, two different time scales were considered. Firstly, data were ag-
gregated over the five years 2001 to 2005, consistent with the five-year aggregation
currently employed in the ONS experimental life expectancy estimates. Addition-
ally, three separate two-year periods (2001-02, 2003-04 and 2005-06) were consid-
ered. The purpose of this was to investigate population sizes much closer to the
5,000 person-years minimum threshold currently in common use (Toson and Baker,
2003; Williams et al., 2005).

For the purposes of implementing the Brass relational model, the English Life Ta-
ble 2001 was obtained from the Government Actuaries Database. Survivorship (lx )
values for males and females separately at the start of each age-group mentioned
above and additionally at ages 90, 95 and 100 were used as the standard life table.

3.2 Life table methods

Age-specific mortality rates (Mx ) were estimated simply by dividing the aggregated
number of deaths by the aggregated mid-year population estimates for the years
concerned. The Chiang life table method was then used to calculate the survivorship
(lx ) column and hence the number of person-years lived throughout the age-group
(Lx ) up until age 85, for males and females separately, for each of the 625 wards.
From age 85, however, three separate methods were used to close the life table. Each
is briefly described below.

3.2.1 The “standard” method (Chiang)

This method is widely used as the standard method for closing the life table (Newell,
1988). It is the method employed in the studies cited in Section 1.3. Here, we assume
that survivors to the start of the final age-group (i.e. age 85) die out at an average rate
of M85+ until there are no further survivors. Hence:

L85+ = l85+
M85+

This can equivalently be expressed as treating the final age-group as if it were a nor-
mal age-group, with width equal to 2

M85+ (Silcocks, 2004).
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3.2.2 The “shrinkage factor” method (Silcocks)

This method can also be expressed as treating the final age-group as if it were a nor-
mal, closed, age-group, but with a width shrunk by a factor related to the number of
deaths upon which the estimate of mortality was based. Silcocks’ formula for esti-
mating the width of the final age interval (z85+) is:

z85+ = 2

M85+

[
1−

(
1−M85+

D85+

)]
where D85+ is the number of deaths occurring throughout the final age group. Hence
the number of person-years, denoted here by L∗

85+, is calculated by:

L∗
85+ = l85+

M85+

[
1−

(
1−M85+

D85+

)]

3.2.3 Extrapolating survival using the Brass relational method

The Brass relational model is a system for estimating a survival curve as a trans-
formation of another, known as the standard. More correctly, the logit of the fitted
survival curve is expressed as a linear translation of the logit of the standard:

0.5ln

(
1− l̂x

l̂x

)
=α+β ·0.5ln

(
1− l s

x

l s
x

)
where l̂x denotes the fitted survivorship curve and l s

x the standard survivorship curve
at age x, and α and β are parameters obtained by linear regression of observed val-
ues of lx against corresponding values of l s

x . A question that arises here is at what
age the regression should be started. The first age should be early enough to include
enough data points, but if the regression begins too early then old-age survival will
be unduly influenced by mortality at old age. 50 years was chosen as a reasonable
compromise start point, allowing eight data points. Hence, for this study, the pa-
rameters α and β are derived either by regressing l50, l55, ..., l85 against the corre-
sponding l̂x values in the standard population using statistical software, or can be
calculated directly using the following formulae:

β =
∑

(zx − z̄)(yx − ȳ)∑
(zx − z̄)2 (1)

α = ȳ −βz̄ (2)

where

zx = 0.5ln

(
1− l s

x

l s
x

)
yx = 0.5ln

(
1− lx

lx

)
z̄ and ȳ are the mean values of zx and yx respectively and the sums in equations 1
and 2 are across the eight values of x upon which the regression is based (from ages
50 to 85).
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From here, fitted values of l̂x are obtained for ages 50 through to 100 by taking
the anti-logits:

l̂x = 1

1+exp(2(α+βzx ))

The final problem is to then piece the two survivorship curves, lx and l̂x together.
Here, to protect against the possibility that l85 < l̂90 (i.e. members of the hypothet-
ical cohort come back to life!), survivorship at age 85 is taken to be the mean of the
observed and fitted values. Hence the final survivorship curve is defined by:

lx for 0 6 x 6 80
1
2

(
lx + l̂x

)
for x = 85

l̂x for 85 6 x 6 100

and the remainder of the life table is calculated using the standard Chiang method-
ology up to age 100, after which point the life table is closed by assuming mean sur-
vival time beyond age 100 to be the same as in the standard population.

3.3 Data analysis

Life expectancies were estimated for males and females separately for all 625 wards
for each of the time periods described in Section 3.1, using each of the three life table
closure methods described above. Additionally, directly age-standardised mortality
rates are calculated for each sex in each of the 625 wards. The standard population
in this case is the European Standard, following precedents set in other studies (e.g.
Wheller et al., 2007).

An important criterion for the validity of using life expectancy as a comparitive
measure of mortality is that the sampling distribution of life expectancy is approxi-
mately normal (Silcocks et al., 2001). Tests of skewness and kurtosis were carried out
on life expectancy estimates produced by each of the three closure methods along
with age-standardised mortality rates as a control.

Pearson and Spearman rank correlation tests were conducted on the life ex-
pectancy estimates to provide an indication of the consistency of life expectancy es-
timates produced by each method. The strength of correlation between males and
females, and between each method of life expectancy and age-standardised rates
during the same period was tested. Additionally, for the two-year data, the strength
of correlation of life expectancy between individual two-year periods was tested.

Finally, the level of spatial auto-correlation between life expectancies of neigh-
bouring wards was tested using Moran’s I co-efficient. For this analysis a 625×625
neighbourhood matrix was constructed using ArcGIS software, where the i j th ele-
ment was defined as 1 if wards i and j shared a boundary, and 0 otherwise.

Calculation of life expectancy and age-standardised rates, as well as all the sta-
tistical analysis, was carried out using Stata 10 for Unix.

10



4 Results

4.1 Descriptive analysis

4.1.1 Five-year data (2001-05)

Table 1 displays descriptive data on population and deaths for the 625 wards over
the course of the five year period 2001-05. For both sexes, the number of population
years lived during the time period ranged from just over 11,500 to over 40,000. The
minimum ward size is therefore twice the size of the minimum population thresh-
old recommended in the current ONS methodological literature of 5,000 person-
years. The crude death rate during this period was slightly higher for females than
for males, though this can be accounted for by the differences in age structure be-
tween the male and female populations; over twice as many deaths occurred to
women aged 85 years or over than to men of the same age. The number of deaths
occurring in that age-interval was also very varied, with a standard deviation around
two-thirds of the mean. Some wards had particularly low numbers of deaths during
that age-group, particularly among males, where the minimum number of deaths
in a ward was five. The heterogeneity of the population age structures, as well as
stochastic variation in numbers of deaths, therefore lead to very small numbers in
the age-intervals, despite population sizes of the wards being well above the mini-
mum threshold currently suggested.

Table 3 displays summary statistics of central tendency and variation of life ex-
pectancy calculated using the three different methods of life table closure. Weighted
mean life expectancies were calculated using the following formula:

L̄E wei g hted =
∑625

i=1 ni LEi

N
(3)

where ni and LEi are the total population and life expectancy in ward i respectively,
and N is the total population for London.

The weighted mean life expectancy of the 625 wards was similar to the overall
life expectancy for London as a whole, though the estimates produced by the Brass
extrapolation method were lower than with the other two methods. There was very
little difference between the ONS and Silcocks methodologies. However, with no
established method of obtaining a standard error, it is not possible to say whether or
not these differences were significant.

4.1.2 Two-year data (2001-02, 2003-04, 2005-06)

Table 2 presents summary descriptive statistics of the population sizes and death
counts of all wards for each two-year sub-period. The minimum population time at
risk fell slightly below the 5,000 person-year threshold suggested in the ONS method-
ology. However, this only occurred in one ward (Darwin, Bromley) so it was not
considered that this would significantly affect the validity of the results. The mean
population-time at risk during each two-year sub-period was more than double the
5,000 threshold.
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Table 1: Descriptive statistics of population and deaths for London wards, 2001-2005
(n = 625)

Central tendency Range

Mean Median Std. dev. Min. Max.

Females

Total population-years 29,905.75 29,433 4,843.99 11,646 46,029
Total deaths 231.80 211 91.54 56 690
Deaths (85+) 93.75 79 58.01 10 411

Males

Total population-years 29,123.36 29,038 4,772.36 11,668 43,061
Total deaths 218.21 214 58.58 70 437
Deaths (85+) 43.91 39 22.40 5 158

Crude death rate (per 1,000 persons):

Females 7.75

Males 7.49

The number of deaths occurring in each ward during each two-year sub-period
also varied considerably between wards. This is a product not only of the size of the
ward’s population, but also of the overall level of mortality, and its age-structure. Of
particular note are the number of deaths in the 85+ age group, which vary from as
little as one death to nearly 200 deaths (for females) during a two-year period. The
mean number of deaths in females in this age group is twice that of males. Thus
small numbers in the final age interval are likely to be a greater problem among
males than for females.

The life expectancy estimates produced by the ONS method, the Silcocks bias-
correction method and the Brass extrapolation methods are summarised in Table
4. For males, the Brass extrapolation method produces mean and minimum values
which are similar to those obtained by the other two methods. However, the max-
imum values are reduced by up to seven years. This enables male life expectancy
estimates to be more consistent with female life expectancy: for 2003-04 and for
2005-06, the maximum life expectancy for males was estimated to be higher than
for females, contrary to usual patterns. Using the Brass extrapolation method pro-
posed here, however, the highest female life expectancy is higher than the highest
male life expectancy for all three periods. Surprisingly, the Silcocks bias-correction
method has very little effect on the extreme high life expectancy estimates.

However for females, the effect of using the Brass extrapolation method is more
varied. In 2001-02 and in 2003-04, the minimum life expectancy calculated by the
ONS method was the same, yet the Brass extrapolation method estimates over a
year’s difference in the minimum life expectancy between the two periods.

12



Table 2: Descriptive statistics of population and deaths for London wards, two-year
data (n = 1875)

Central tendency Range

Mean Median Std. dev. Min. Max.

Females

Total population-years 11,979.74 11,769 1,945.16 4,614 18,578
Total deaths 91.11 83 37.26 21 298
Deaths (85+) 36.99 31 23.55 2 183

Males

Total population-years 11,673.21 11,632 1,922.62 4,660 17,536
Total deaths 86.21 84 24.70 19 203
Deaths (85+) 17.52 15 9.56 1 68

Table 3: Life expectancy estimates produced using three different life table closure
methods, for 625 wards in London, 2001-2005

Closure method Meana Min. Max.

Females

Life expectancy for London 81.18 — —
Chiang (ONS method) 81.45 75.93 90.01
Silcocks bias-correction 81.44 75.93 89.99
Brass extrapolation 80.78 76.05 87.68

Males

Life expectancy for London 76.49 — —
Chiang (ONS method) 76.51 70.36 87.12
Silcocks bias-correction 76.50 70.36 87.10
Brass extrapolation 76.16 70.30 84.60

aWeighted mean, based on population size.
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4.2 Discrepancies between the three methods

This section illustrates with practical examples how the three methods produce dif-
ferent estimates of life expectancy. Individual wards have been chosen as best il-
lustrative examples where particularly large discrepancies occurred, and are not in-
tended as a representative sample of all results. For the purposes of illustration, only
two-year data are considered.

Differences between the standard method and the Silcocks “shrinkage factor”
method were minimal in all areas. The maximum differential in any ward for any
two-year period was 0.13 years for females and 0.28 years for males. However, differ-
ences between the standard method and the Brass extrapolation method were much
larger. The largest reductions in life expectancy incurred by applying the Brass ex-
trapolation method were 7.6 years for females and 15.4 years for males. The top two
survivorship graphs in Figure 2 illustrate how the life expectancy has been reduced.
In both cases, the “tail” of the survivorship curve (i.e. the portion beyond 85 years
of age) approaches horizontal, extending the effective width of the final age interval
beyond what is plausible. In the case of Green Street East, the survivorship curve
doesn’t reach zero until the age of 205 years. Unsurprisingly, it is this ward where the
discrepancy of 15.4 years occurred.

Unlike the Silcocks method, however, the Brass extrapolation method can ad-
just life expectancy upwards as well as downwards. The greatest increase in life ex-
pectancy was 2.96 years for females and 2.34 years for males. Examples of this effect
are shown in the lower half of Figure 2. Here, mortality in the final age group is so
high that survivors to age 85 are predicted to all die out shortly afterwards, if the
standard or Silcocks method of closure is followed. The Brass extrapolation method
assumes a smoother end to the survivorship curve.

Absolute differences between the standard method and the Brass extrapolation
are on average, fairly large. The mean absolute difference (that is to say, the mean
change ignoring the direction of the change) was 1.09 years for females and 0.71
years for males. The mean difference between the Silcocks method and the stan-
dard was only 0.019 years for females and 0.024 years for males. In the following
sections, although the tables include analysis of the Silcocks method, the text will
only describe differences between the standard method and the Brass extrapolation.

4.3 Normality

Table 5 shows the results from testing the life expectancy estimates for each of the
three methods along with age standardised rates for approximation of a normal dis-
tribution, using five-year data. For both males and females, the Brass extrapolation
method reduces both skewness and kurtosis in life expectancy, bringing the distri-
bution of life expectancy estimates for wards in London closer to the normal distri-
bution. However, the p-values suggest that the data still can’t be assumed to have
been sampled from a normal distribution. Figure 3 illustrates how the right-hand
tail of the distribution has been curtailed when the Brass extrapolation method is
used to close the life table.
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Figure 2: Illustrative examples of how the three methods of life table closure yield
different estimates of life expectancy, selected London wards, two-year data

4.4 Comparing male to female life expectancy

Tables 6 and 7 show Pearson and Spearman rank correlation co-efficients for the
association between male and female life expectancies as calculated using each of
the three methods of closing the life table. Though the strength of correlations are
slightly reduced when the Spearman rank test is employed, the correlations are still
highly statistically significant (P<0.0005 in all cases). Correlations were stronger
among the five-year data than for two-year periods.

For all periods, the Brass extrapolation method increases the strength of the as-
sociation between male and female life expectancy to a similar level to the strength
of the gender correlation of age-standardised mortality rates. The two-year data
show a further interesting trend: in 2003-04, the strength of the life expectancy gen-
der correlation dropped substantially below that of both 2001-02 and 2005-06 when
measured by the standard method; in comparison, gender correlations of life ex-
pectancy when the Brass extrapolation method was employed remained constant
throughout. One explanation for this may be the erroneous life expectancy esti-
mated by the standard method for males in Green Street East (see Section 4.2).

Figure 4 shows a scatter plot of life expectancy for males against life expectancy
for females for the standard method as compared with the Brass extrapolation method,
for the five-year data 2001-05. This illustrates how the extreme outliers have been
brought closer to the line of best fit, yielding a modest improvement in the correla-
tion between male and female life expectancies.
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Table 5: Skewness and kurtosis tests, and test for normality of life expectancy and
age-standardised rates, London wards, 2001-05 (p-values in parentheses)

Measure Skewness Kurtosis Test for normalitya

Females

Age-standardised rates .275 (0.005) 3.26 (0.175) (0.011)

Life expectancy:

Chiang method (ONS) .517 (<0.001) 3.66 (0.006) (<0.001)

Silcocks bias-correction method .516 (<0.001) 3.65 (0.006) (<0.001)

Brass extrapolation method .371 (<0.001) 3.11 (0.489) (0.002)

Males

Age-standardised rates .244 (0.013) 3.02 (0.815) (0.044)

Life expectancy:

Chiang method (ONS) .402 (<0.001) 3.60 (0.010) (<0.001)

Silcocks bias-correction method .399 (<0.001) 3.59 (0.011) (<0.001)

Brass extrapolation method .197 (0.043) 2.84 (0.431) (0.096)

aThe Stata skewness-kurtosis test is based on D’Agostino et al. (1990)

Table 6: Pearson correlations between males and females for life expectancy and
age-standardised rates, London wards, five-year and two-year data.

Five-year Two-year

Measure 2001-05 2001-02 2003-04 2005-06

Age-standardised rates 0.7624 0.6239 0.6036 0.6505

Life expectancy:

standard 0.7432 0.6013 0.5396 0.5998

Silcocks 0.7434 0.6016 0.5409 0.6006

Brass extrapolation 0.7804 0.6182 0.6184 0.6120
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Figure 3: Distribution of life expectancy estimates, electoral wards, London, 2001-05
(n = 625)

Table 7: Spearman rank correlations between males and females for life expectancy
and age-standardised rates, London wards, five-year and two-year data.

Five-year Two-year

Measure 2001-05 2001-02 2003-04 2005-06

Age-standardised rates 0.7467 0.6172 0.5921 0.6194

Life expectancy:

standard 0.7131 0.5695 0.5434 0.5698

Silcocks 0.7134 0.5698 0.5443 0.5707

Brass extrapolation 0.7732 0.5949 0.6240 0.6021
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Figure 4: Scatterplots of female against male life expectancy, ONS method and Brass
extrapolation method, electoral wards, London, 2001-05 (n = 625)

4.5 Correlations between time-periods

Table 8 shows the correlations between consecutive periods of different methods of
estimating life expectancy, as well as age-standardised rates. Whereas the correla-
tion between consecutive years improved when the Brass extrapolation method was
applied to estimate male life expectancy, the equivalent correlation for females was
weakened.

4.6 Spatial auto-correlation

Table 9 shows the results of testing for spatial auto-correlation of life expectancy be-
tween neighbouring wards, using each of the three life table closure methods. Life
expectancy for both males and females exhibited strong evidence of auto-correlation
regardless of what life table closure method was used (P<0.0005 in all cases). Spa-
tial auto-correlation of life expectancy was stronger for males than females. Age-
standardised mortality rates were less strongly auto-correlated than life expectancy
for both males and females. Using the Brass extrapolation method to close the
life table resulted in the spatial auto-correlation of life expectancy appearing to be
stronger.

Figure 6 shows a cartogram of life expectancy estimates for electoral wards across
London, 2001-05.

This spatial auto-correlation is illustrated using a cartogram (Figure 6). This is
not a map of London based on geographic location, however, as this does not give
an accurate portrayal of the number of people living in areas of high or low life
expectancy. Indeed, as many inner London wards are densely populated, cover a
small geographic area and have a low life expectancy (apart from in two boroughs
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Table 8: Spearman rank correlations between consecutive two-year periods of life
expectancy, 625 London wards

Females Males

2001-02 with 2003-04 with 2001-02 with 2003-04 with
2003-04 2005-06 2003-04 2005-06

Age-standardised rates 0.6297 0.6802 0.6891 0.6889

Life expectancy:

standard 0.6021 0.6468 0.6883 0.6691

Silcocks 0.6024 0.6471 0.6893 0.6703

Brass extrapolation 0.5698 0.6242 0.7212 0.7329

Table 9: Moran’s I statistic for spatial auto-correlation for life expectancies in Lon-
don wards

Five-year Two-year

2001-05 2001-02 2003-04 2005-06

Females

Age-standardised mortality rate 0.347 0.273 0.286 0.295
Life expectancy:

standard 0.393 0.290 0.338 0.297
Silcocks 0.394 0.291 0.339 0.298
Brass extrapolation 0.463 0.334 0.365 0.333

Males

Age-standardised mortality rate 0.414 0.353 0.349 0.351
Life expectancy:

standard 0.447 0.379 0.345 0.374
Silcocks 0.448 0.380 0.347 0.376
Brass extrapolation 0.499 0.413 0.426 0.424

(P<0.0005 for all correlations)
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Figure 5: PCT districts within Greater London, resized by ward population size,
2001-05

as described below) this visualisation tends to under-represent the number of peo-
ple living in areas of low life expectancy. A cartogram was thus constructed rep-
resenting each ward with an area equal to its estimated population size during the
period 2001-05. This was done using an implementation of the “Rubber Sheet” algo-
rithm for cartogram construction (Wolf, 2005) in the ArcGIS software package. The
thick lines represent the boundaries of the regions of responsibility of Primary Care
Trusts (PCT), the local bodies responsible for health planning in the local commu-
nity. These areas are contiguous with the London boroughs, with two exceptions:
Sutton and Merton are merged into one PCT, and the City of London is combined
with the borough of Hackney. The names of PCT areas are illustrated in Figure 5.

The overall geographic trend for both sexes is that wards with low life expectan-
cies are concentrated in East, North and South inner London (including Islington,
Hackney, Tower Hamlets, Newham, Greenwich, Lewisham, Southwark and Lam-
beth). For males, Camden can also be included in that group, though for females, life
expectancy in this borough is fairly mixed. Areas of high life expectancy are broadly
Westminster and Kensington & Chelsea (except the most northern wards in those
boroughs) as well as the more suburban outer London boroughs.
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Legend

Life expectancy at birth - females

Colours represent deciles (figures in years)
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Life expectancy at birth - males
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Figure 6: Cartogram of life expectancy, females (top) and males (bottom), using the
Brass extrapolation method of life table closure.
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5 Discussion

5.1 Conclusion

Survivorship curves for wards do fit reasonably closely to “typical” survivorship curves
for larger populations up to age 85, despite the small numbers of deaths and the
small populations involved. However, the trajectory of the survival curve after the
point of interruption (in this case age 85 years) has a tendency to deviate from its
expected path were it to follow a typical pattern through to its culmination. It is pro-
posed here that this confounds estimates of life expectancy, and there is evidence
from the empirical data used here to show that this is the case. The method pro-
posed here, of closing the life table by extrapolating from a linear-logit transforma-
tion of a standard life table (as per Brass, 1971), as well as the “shrinkage factor”
method proposed by Silcocks (2004), are intended to mitigate against this, enabling
more accurate estimates of life expectancy to be made.

The choice of life table closure method does have a profound effect on life ex-
pectancy estimates for small areas. The Silcocks “shrinkage factor” method gave
estimates that were mostly almost identical to those produced by the standard Chi-
ang method, with a few exceptions in areas with few residents over the age of 85.
However, there remained several wards where the trajectory of the life expectancy
beyond the start of the final age interval was not consistent with what would typi-
cally be expected. This indicates that biases in life expectancy incurred through the
final age group are not due to small numbers alone.

Extrapolation using a Brass relational model reduces the skewness of estimates
in life expectancy, bringing the sampling distribution closer to the normal. This ef-
fect was more profound in males than in females. The trajectory of the survivorship
curve beyond age 85 was more consistent with typical survivorship curves (as would
be expected, since they were used as the standard) and there were no wards, even
using only two years of data, with implausibly high life expectancy. The number of
wards where male life expectancy was estimated to be higher than female life ex-
pectancy was also reduced.

However, as indicated by the correlations between life expectancy estimates in
different two-year periods, the picture is not the same across both sexes. The Brass
extrapolation method reduced the correlation in life expectancy between consecu-
tive two-year periods for females. One explanation for this is the difference in age
structure between the male and female populations, and in particular in the distri-
bution of deaths, as shown in Figure 7. One limitation of the Brass extrapolation
is that it discards deaths data beyond the age at which the life table is interrupted.
While the average number of deaths discarded for males is not a large proportion of
overall male deaths, more women survive beyond age 85, meaning that more deaths
occur in that final age interval, and thus a greater proportion of the deaths data is
discarded. This is consistent, however, with the notion that the point at which the
life table is interrupted should be later for females than for males (Vallin and Caselli,
2006).
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Figure 7: Mean number of deaths by age-group, two-year data (2001-02, 2003-04 and
2005-06 combined)

5.2 Limitations

While this method shows promise for the estimation of life expectancy for small
populations as an indicator of mortality for use in comparative studies, there are a
number of limitations. Possible avenues of investigation for overcoming these limi-
tations are also considered here.

Firstly, most importantly, the issue of calculating variance (and hence standard
error and confidence intervals) remains unsolved. This is because the contribution
towards overall variance from the sections of the survivorship curve that have been
extrapolated are as yet unknown. Methods of estimating standard error of a linear
regression such as the ones used to predict survivorship beyond the interruption
point of the life table are available, though with the formulae for calculating stan-
dard error of life expectancy already being complex and based on debated assump-
tions, such an approach may only serve to further muddy the waters. An alternative
method would be to derive life expectancy using a Bayesian framework, thus directly
estimating uncertainty (through Monte Carlo Markov Chain simulation) rather than
relying on long, obfuscatory formulae.

Applying a Bayesian framework to the estimation of life expectancy for small
populations would also address a second limitation: the underlying mortality rates
themselves. Here, mortality rates are derived simply by dividng the number of deaths
by the estimated population at risk, taking no account of age-patterns of mortality
or the spatial structure of the data. A hierarchical Bayesian model allows the “intel-
ligent smoothing” or “borrowing of strength” from the rest of the dataset, according
to assumptions made based on the structure of the data (Graham, 2008). A Bayesian
spatial smoothing technique was applied by Congdon (2002) to age-specific mor-
tality rates that formed the basis of estimating life expectancy for use in informing
policy on the allocation of health resources in north-east Greater London.
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Another limitation in this study is the arbitrary choice of both starting age for the
basis of the extrapolation and of the standard life table. Both of these were chosen on
the basis that they were sensible options, though it is recognised that these choices
should not be seen as definitive. Ideally, a sensitivity analysis should be carried out
to determine what effect the choice of starting age and standard life table have on
the resultant estimates of life expectancy, and if the effect is significant, what choice
is most favourable. However, it is assumed here that these choices are not critical,
and other plausible alternatives could have been chosen without drastically altering
the results.

However, despite these limitations, the method of closing the life table by ex-
trapolating the survivorship curve shows promise. It can be implemented without
high-powered statistical software as the co-efficients α and β can be derived alge-
braically. It is shown to reduce the skewness of the distribution of life expectancy
for small areas (thus increasing the validity of the assumption that life expectancy
is normally distributed), and for males, to improve consistency in life expectancy
both over time and with other measures of mortality. However, that this is not the
case for females indicates that too much mortality data is lost when the life table
is interrupted at age 85. Given that life expectancy for females is approximately five
years higher than males, interrupting the female life table at age 90 should be a more
appropriate point.

A logical next step in the development of this methodology is to apply it to age-
specific mortality rates for small areas that have been derived using Bayesian hierar-
chical modelling, as these represent less crude estimates of mortality rates and allow
confidence intervals to be evaluated directly without the need for long and complex
formulae.

References

Bailey, K., Walrond, S., 2005. Life expectancy in Hartlepool. Tech. Rep. 18, North East
Public Health Observatory.

Brass, W., 1971. On the scale of mortality. In: Biological Aspects of Demography. Tay-
lor and Francis, London, pp. 69–110.

Cai, Y., 2005. National, provincial, prefectural and county life tables for China based
on the 2000 Census. CSDE Working Paper 05-03, Centre for Studies in Demogra-
phy & Ecology, University of Washington.

Chiang, C., 1968. Introduction to Stochastic Processes in Biostatistics. Wiley, New
York.

Congdon, P., 2002. A life table approach to small area health need profiling. Statisti-
cal Modelling 2 (1), 63–88.
URL http://smj.sagepub.com/cgi/content/abstract/2/1/63

D’Agostino, R., Belanger, A., D’Agostino Jr, R., 1990. A suggestion for using powerful
and informative tests of normality. American Statistician, 316–321.

25



Department of Health, 2001. The national health inequalities targets. Tech. rep.,
Crown Copyright.

Eayres, D., Williams, E. S., 2004. Evaluation of methodologies for small area life ex-
pectancy estimation. Journal of Epidemiology and Community Health 58 (3), 243–
249.

Gardner, M., Donnan, S., 1977. Life expectancy: variations among regional health
authorities. Population Trends 10, 10–12.
URL http://www.popline.org/docs/0427/213544.html

Graham, P., May 2008. Intelligent smoothing using hierarchical bayesian models.
Epidemiology 19 (3), 493–495.
URL http://dx.doi.org/10.1097/EDE.0b013e31816b7859

Hogstedt, C., Lundgren, B., Moberg, H., Vingård, E., 2006. Medellivslängd och ohäl-
sotal utmed spårtrafiken i Stockholm. Tech. rep., Statens Folkhälsoinstitut, Stock-
holm.

Huong, D. L., Minh, H. V., Vos, T., Janlert, U., Van, D. D., Byass, P., 2006. Burden of pre-
mature mortality in rural Vietnam from 1999–2003: analyses from a demographic
surveillance site. Population Health Metrics 4 (1), 9.

Manuel, D. G., Goel, V., Williams, J. I., 1998. The derivation of life tables for local
areas. Chronic Diseases in Canada 19 (2), 52–56.
URL http://view.ncbi.nlm.nih.gov/pubmed/9664025

Mazess, R. B., Forman, S. H., 1979. Longevity and age exaggeration in Vilcabamba,
Ecuador. Journal of Gerontology 34 (1), 94–98.
URL http://geronj.oxfordjournals.org/cgi/content/abstract/34/1/94

Mindell, J., Fitzpatrick, J., Seljmani, F., 2004. Health inequalities in london: Life ex-
pectancy and mortality 1998–2002. Tech. rep., London Health Observatory.
URL http://eprints.ucl.ac.uk/902/

Myers, R. J., 1940. Errors and bias in the reporting of ages in census data. Transac-
tions of the Actuarial Society of America 41 (Pt 2), 395–415.

National Center for Health Statistics, 1987. Methodology of the national and state
life tables. u.s. decennial life tables for 1979-81. Tech. rep., NCHS.

National Center for Health Statistics, 1998. Methodology of the national and state
life tables. u.s. decennial life tables for 1989-91. Tech. rep., NCHS.

New Zealand Ministry of Health, 2005. Monitoring health inequality through neigh-
bourhood life expectancy: Public health intelligence occasional bulletin no. 28.
Tech. rep., Ministry of Health, Wellington.
URL http://www.moh.govt.nz/moh.nsf/pagesmh/4142?Open

Newell, C., 1988. Chapter 6: Mortality and life tables. In: Methods and Models in
Demography. Belhaven, London, p. 217.

26



Office for National Statistics, 2006. Life expectancy at
birth for wards in England and Wales (experimental).
http://www.statistics.gov.uk/statbase/Product.asp?vlnk=14466.
URL http://www.statistics.gov.uk/statbase/Product.asp?vlnk=14466

Raleigh, V. S., Kiri, V. A., 1997. Life expectancy in England: variations and trends by
gender, health authority, and level of deprivation. Journal of Epidemiology and
Community Health 51 (6), 649–658.
URL http://jech.bmj.com/cgi/content/abstract/51/6/649

Retherford, R. D., Mirza, G. M., Jul. 1982. Evidence of age exaggeration in demo-
graphic estimates for Pakistan. Population Studies 36 (2), 257–270.
URL http://www.jstor.org/stable/2174200

Rosenwaike, I., Stone, L. F., Nov. 2003. Verification of the ages of supercentenarians
in the united states: Results of a matching study. Demography 40 (4), 727–739.
URL http://www.jstor.org/stable/1515205

Scherbov, S., Ediev, D., 2009. Life table techniques for small populations: effects of
population size, of the mortality level, and of age composition. In: 26th IUSSP
International Population Conference, Marrakech.

Silcocks, P. B. S., 2004. Improving estimation of the variance of expectation of life for
small populations. Journal of Epidemiology and Community Health 58 (7), 611–
612.
URL http://dx.doi.org/10.1136/jech.2003.011338

Silcocks, P. B. S., Jenner, D. A., Reza, R., 2001. Life expectancy as a summary of mor-
tality in a population: Statistical considerations and suitability for use by health
authorities. Journal of Epidemiology and Community Health 55 (1), 38–43.
URL http://dx.doi.org/10.1136/jech.55.1.38

Toson, B., Baker, A., 2003. Life expectancy at birth: Methodological options for small
populations. Tech. Rep. 33, Office for National Statistics.

Vallin, J., Caselli, G., 2006. Chapter 11: Cohort life table. In: Demography: Analysis
and Synthesis. Vol. 1. Academic Press, pp. 103–129.

Veugelers, P. J., Hornibrook, S., 2002. Small area comparisons of health: applications
for policy makers and challenges for researchers. Chronic Diseases in Canada
23 (3), 100–110.
URL http://view.ncbi.nlm.nih.gov/pubmed/12443566

Wheller, L., Baker, A., Griffiths, C., Rooney, C., 2007. Trends in avoidable mortality in
england and wales, 1993-2005. Health Statistics Quarterly (34), 6–25.
URL http://www.ncbi.nlm.nih.gov/pubmed/17580644

Williams, E. S., Dinsdale, H., Eayres, D., Tahzib, F., 2004. Impact of nursing home
deaths on life expectancy calculations in small areas. Journal of Epidemiology and
Community Health 58 (11), 958–962.
URL http://dx.doi.org/10.1136/jech.2003.017608

27



Williams, E. S., Eayres, D., Dinsdale, H., Tahzib, F., 2005. Calculating life expectancy
in small areas. Tech. rep., South East Public Health Observatory, Oxford.

Williams, E. S., Scott, C. M., Scott, S. M., 1995. Using mortality data to describe geo-
graphic variations in health status at sub-district level. Public Health 109 (1), 67–
73.
URL http://view.ncbi.nlm.nih.gov/pubmed/7871148

Wolf, E., 2005. Creating contiguous cartograms in ArcGIS 9. In: 25th Ann. ESRI Inter-
nat. Users Conf.

28


