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Consumption-Driven Environmental Impact and Age-Structure Change in OECD Countries: 
A Cointegration-STIRPAT Analysis 
 
 
ABSTRACT 

This paper examines two types of environmental impact for which population has a 

substantial demonstrated influence: carbon emissions from transport and residential 

electricity consumption. It takes as its starting point the stochastic version of the IPAT 

equation or the STIRPAT framework. The paper advances that framework in two important 

ways: (1) it disaggregates population into four key age groups: 20-34, 35-49, 50-69, and 70 

and older; and (2) it employs advanced time-series-based techniques like panel unit root tests, 

panel cointegration, and panel Fully Modified OLS. Population has been shown to impact the 

environment in considerably different ways across age-groups—e.g., young adults typically 

behave in more environmental intense ways than older ones. The variables typically analyzed 

in STIRPAT studies are stock (population) or stock-related variables (GDP, emissions, and 

energy consumption), and thus, are likely nonstationary—i.e., their means change over time. 

Such data sets should be tested for panel-unit roots and panel-cointegration. Initial results 

indicate that population has a greater impact than affluence on carbon emissions from 

transport and residential electricity consumption, that young adults exert a greater influence 

on the environment than older adults, and that such influence is more pronounced in the 

transport than in the residential sector.  
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1. Introduction and literature review 

Increases in anthropogenic greenhouse gas (GHG) concentrations are believed to have 

caused most of the recent increases in global average temperatures, i.e., climate change. The 

primary anthropogenic GHG is carbon dioxide, which is predominately caused by the 

combustion of fossil fuels. Yet, many alternatives to carbon-based energy technologies have 

environmental impacts too: wind farms affect bird migrations and are considered by some to 

be unsightly; hydro-power often involves massive construction-engineering projects (which 

contribute their own carbon emissions) and can cause displacements of people, wildlife, and 

ecosystems (e.g., China’s Three Gorges dam); and nuclear power raises safety concerns and 

waste disposal issues, as well as the threat of non-energy, military uses. This paper focuses on 

consumption-driven environmental impact (carbon emissions from transport and residential 

electricity consumption) and employs the stochastic version of the IPAT model, panel 

cointegration, and Pedroni’s (2000) Fully Modified OLS (FMOLS) estimator to determine 

the influence of wealth, population, and population age-structure for a panel of OECD 

countries.   

A popular framework used to examine the population-environment relationship at the 

national level is Dietz and Rosa’s (1997) STIRPAT (Stochastic Impacts by Regression on 

Population, Affluence, and Technology). STIRPAT builds on IPAT/impact equation of 

Ehrlich and Holdren (1971): 

TAPI       (1) 

Where I is environmental impact, P is population, A is affluence or consumption per capita, 

and T is technology or impact per unit of consumption. Two of the criticisms of the Ehrlich-

Holdren/IPAT framework are that, as a mathematical or “accounting” identity, it does not 

permit hypothesis testing, and that it assumes a priori a proportionality in the functional 
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relationships between factors. Dietz and Rosa (1997) addressed those two criticisms by 

proposing a stochastic version of IPAT: 

     i
d
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b

i eTAaPI       (2) 

Where the subscript i denotes cross-sectional units (e.g., countries), the constant a and 

exponents b, c, and d are to be estimated, and e is the residual error term. Since Equation 2 is 

linear in log form, the estimated exponents can be thought of as elasticities (i.e., they reflect 

how much a percentage change in an independent variable causes a percentage change in the 

dependent variable.) Furthermore, Equation 2 is no longer an accounting identity whose right 

and left side dimensions must balance, but a potentially flexible framework for testing 

hypotheses.  

The studies applying the STIRPAT formulation to carbon emissions typically found 

that both population and income/affluence are significant drivers—with elasticities often near 

or above unity (thus, e.g., a 1% increase in population caused an approximate 1% increase in 

emissions). Furthermore, most studies have found that population has a greater impact (i.e., 

elasticity) than affluence (e.g., Dietz and Rosa 1997; Shi 2003; York et al. 2003; Cole and 

Neumayer 2004; Martinez-Zarzoso et al. 2007; and Liddle and Lung 2010). 

This paper advances the population-environment and STIRPAT literature in two 

important ways. First, it is one of a growing number of national-level studies to examine 

consumption-driven environmental impacts (like Liddle 2004 and Liddle and Lung 2010) and 

to consider population structure’s (i.e., household size or age-cohorts) influence on 

environment (like Cole and Neumayer 2004; Liddle 2004; and Liddle and Lung 2010). 

Second, it tests the variables analyzed for unit roots (or stationarity) and employs 

cointegration and FMOLS to estimate elasticities. Although the variables used in STIRPTAT 

analyses are often highly trending (and thus, likely to be nonstationary), and although 

cointegration has been used extensively in the energy economics literature to examine 
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relationships among similar variables (e.g., Narayan and Smyth 2008; Lee et al. 2008; Lee 

and Chang 2008), to our knowledge cointegration has not been used in empirical population-

environment studies.  

1.1 Consumption-driven impact and population age-structure 

 Population, and particularly population change, is less likely to directly impact 

national, aggregate emissions like carbon dioxide, since those emissions should be heavily 

influenced by the structure and energy intensity of the macro-economy and by the 

technologies used to generate electricity (i.e., coal vs. nuclear). For example, smaller in 

population (by about a third), but very coal-intensive, Australia uses less than half the energy 

of France (which relies substantially on nuclear generated electricity), yet emits seven percent 

more carbon than France. However, transport and energy in the home are consumed on the 

individual, household level, and thus, are much more likely to be directly influenced by per 

capita wealth and population. Although a few STIRPAT studies have considered aggregate 

emissions other than carbon dioxide (e.g., Cole and Neumayer 2004 also considered sulphur 

emissions, and Rosa et al. 2004 considered methane emissions too), only Liddle and Lung 

(2010) has disaggregated environmental impact by demand or causal sector. 

A number of researchers, working with micro-level data, have shown that activities 

like transport and residential energy consumption vary according to age-structure and 

household size (e.g., O’Neill and Chen 2002; Liddle 2004; and Prskawetz et al. 2004). A 

more limited number of studies using macro-level data have shown a similar relationship 

(specifically, Cole and Neumayer 2004; Liddle 2004; and Liddle and Lung 2010).  

In general, age-structure matters because (i) people in different age-cohorts or at 

different stages of life have different levels of economic activity; and (ii) the age of 

household head is associated with size of household, and larger households consume more 

energy in aggregate, but less per person, than smaller households. For example, both 
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residential and transportation energy consumption per capita differ nonlinearly when the age 

of householder is decomposed at 5-year intervals for US data: transportation follows an 

inverted-U type shape, whereas residential energy consumption tends to increase with age of 

householder—but at a non-constant rate (O’Neill and Chen 2002). Liddle (2004), also 

considering US data, showed that average miles driven per person decline as the number of 

household members increases, and, at least in small households (one to two people), when 

controlling for the size of household, 20-30 year-olds drive more per person than other age-

groups. In addition, large households (4 people or more) are predominately headed by people 

in the 35-49 age cohort, and the vast majority of households headed by those aged 50 and 

older are either single or two-person households (again, from US data).  For example, the 

estimated1 average household sizes for households headed by persons aged between 20-34, 

35-49, 50-64, and 65-75 are 2.7, 3.1, 2.2, and 1.8, respectively.  

1.2 Nonstationary variables, cointegration modeling, and FMOLS 

 Most variables used in STIRPAT analyses are stock (population) or stock-related 

variables (GDP, emissions, and energy consumption, which are influenced by stocks like 

population and physical capital); as such, those variables are likely nonstationary—i.e., their 

mean, variance, and/or covariance with other variables changes over time. When OLS is 

performed on time-series (or time-series cross-section) variables that are not stationary, 

measures like R-squared and t-statistics are unreliable, and there is a serious risk of the 

estimated relationships being spurious. Yet, few STIRPAT studies that employ annual (or 

more frequent) time-series cross-section (i.e., panel) data have been concerned with the 

stationarity issue. Two exceptions to this lack of concern were Cole and Neumayer (2004) 

and Martinez-Zarzoso (2007), both of which recognized this hazard in their data and 

                                                 
1 This number is estimated because the last household size category supplied in the data is “seven or more” 
members, i.e., the number of households with exactly eight, nine, etc., members is not explicitly known from the 
data. 
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estimated first-difference models to correct for it.2 However, first-differencing means that the 

model is a short-run (rather than a long-run) model, and that the estimated coefficients are 

constants of proportionality between percentage changes in the independent variables and 

percentage changes in the measure of impact, rather than elasticities.  

As an alternative to taking first-differences, one could test for panel-unit roots (or 

stationarity) and panel-cointegration, and, depending on the outcome of those tests, estimate 

the equation via methods like FMOLS.3 (Such tests were originally designed for time-series 

but have been expanded to cover panel data sets.) Two or more nonstationary variables are 

said to be cointegrated if some linear combination of them is stationary. The finding of 

cointegration among economic or economic-related variables is interpreted as evidence of a 

long-run, equilibrium relationship. Indeed, the rather large energy consumption-GDP 

causality literature has shown that (i) variables like GDP per capita, population (or labor 

force), and emissions/energy consumption are all panel-unit root, and (ii) production-function 

models—where GDP is a function of energy consumption, labor, and physical capital—are 

panel-cointegrated for panels of both developed and developing countries (e.g., Narayan and 

Smyth 2008; Lee et al. 2008; Lee and Chang 2008). 

Pedroni’s (2000) FMOLS estimator is designed for panels of cointegrated variables 

and produces asymptotically unbiased estimates and standard normal distributions free of 

nuisance parameters. FMOLS accounts for stationarity and corrects for both residual 

autocorrelation and endogeneity. Addressing the long-run nature of the relationship (i.e., 

cointegration) among STIRPAT variables, as well the likely endogeneity among them, is 

particularly appropriate since such variables are believed to be inter-related and mutually 

                                                 
2 Liddle and Lung (2010) observed data at five-year intervals, and thus, stationarity was not an issue in their 
models. 
3 Another method to estimate coefficients in a cointegrated panel is dynamic OLS; however, there is some 
evidence that FMOLS is more powerful in small data sets (McCoskey and Koa 1999). Also, FMOLS does not 
assume a specific form of the nuisance parameters, making it more robust (Pedroni, 2000).  
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causal according to a number of social science theories. For example, affluence (or GDP per 

capita) is believed to affect population—through both human capital’s influence on birth rates 

(e.g., Becker et al. 1990) and higher income’s ability to lower death rates. Likewise, 

population has been shown to impact affluence—such as when the size of the working-age 

population increases faster than the size of the dependent-age population (e.g., Bloom and 

Williamson 1998); meanwhile, human capital and technology have been recognized as 

drivers of economic growth (affluence) since Solow (1956). 

2. Data, empirical specification, and methods 

 We use time-series cross-section data from 22 OECD countries spanning 1960-2007. 

Our panels are not balanced since energy and emissions data start in 1971 for Korea, energy 

data starts in 1973 for Denmark, and population data starts in 1971 for Greece and in 1976 for 

Canada (in addition, a few other countries are missing occasional population data points). 

Table 1 displays the variable names and their sources.  

Table 1 

We consider as dependent variables two environmental impacts for which population 

is likely to exert an important influence: carbon emissions from transport (i.e., all transport 

activity from domestic aviation, domestic navigation, road, rail and pipeline transport) and 

residential electricity consumption. Furthermore, those two impacts are increasing 

substantially in developed countries. Figure 1 shows the change since 1971 (data normalized 

to that year) in per capita consumption of both residential electricity and residential energy 

and in the per capita emissions of both carbon from transport and carbon from all sources for 

the OECD as a whole. Electricity consumption is increasing rapidly and linearly (it has more 

than doubled), and emissions from transport have increased by about 50 percent; however, 

residential energy consumption has stayed more or less the same, and aggregate carbon 

emissions have declined some. 
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Figure 1 

2.1 Empirical specification 

Following others in the literature, we use real GDP per capita as the measure of 

affluence. Because we believe age-structure plays an important part in population’s influence 

on environmental impact, in addition to total population, we consider the population shares of 

a number of key age groups: 20-34, 35-49, 50-69, and 70 and older. (We do not include the 

share of those aged 19 and younger since, as primarily dependent children, their impact 

mostly should be included in their parents’ age group.)  

The age groupings are chosen to approximate life-cycle periods that likely correspond 

to different levels of economic activity (and thus energy consumption) and to various 

household size memberships. (The age groupings are nearly the same as those used in Liddle 

and Lung 2010.) In general, the 35-49 age group tends to have the largest households, and 

thus, should be less energy intensive (i.e., have a negative coefficient); whereas, the oldest 

age group (70 and older) may stay at home more, and thus, consume more residential 

electricity. Also, the youngest group (20-34) drives the most per capita, while the oldest age 

group drives the least.    

Since the road sector contributes about 85 percent of transport’s carbon emissions in 

North America and 93 percent in Europe, two intensity variables that might be related to 

carbon emissions from transport are urbanization and population density. However, 

urbanization is probably not a good indication of the spatial density of living in developed 

countries. For example, over 1960-1990, national levels of urbanization were actually 

negatively correlated with the population density of inner cities (   = -0.33, data from 

Kenworthy et al. 1999). In addition, Liddle and Lung (2010) ultimately determined that 

urbanization had no effect on carbon dioxide emissions from transport in their STIRPAT 

regressions. Also, since national land areas are nonchanging, population density is highly 
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correlated with population (already an independent variable), and differences in area can be 

captured via country-specific dummy variables. Thus, the equation analyzed for carbon 

emissions from transport is: 

itititititititTiit AcPzPyPxPwPvI   lnlnlnlnlnlnln ,4,3,2,1,    (3) 

Where subscripts it denote the ith cross section and tth time period. The I, PT, P1-4, and A are 

the aggregate environmental impact or emissions, total population, the shares of population in 

the four cohorts defined above, and per capita GDP (or affluence), respectively. The constant 

  is the country or cross-section fixed effects and  is the error term.  

Urbanization may be correlated to the amount of people who are connected to a 

country’s electricity grid—and thus, positively correlated with residential electricity 

consumption (indeed, Liddle and Lung 2010, argued this is the case in their regressions). 

However, urbanization is highly correlated with affluence, and, at least in rich countries, 

people living in rural areas tend to have access to electricity. A more direct measure of access 

to a country’s electricity grid would be electricity’s share of residential energy consumption 

(a variable that was statistically significant in Liddle and Lung’s residential electricity 

consumption regressions too).  Thus, the equation analyzed for residential electricity 

consumption is: 

ititititititititTiit ShEdAcPzPyPxPwPvI   lnlnlnlnlnlnlnln ,4,3,2,1,  (4) 

Where ShE is electricity’s share of residential energy consumption (and subscripts and other 

variables as in Equation 3). 

2.2 Methods 

The first step is to determine whether all the variables are integrated of the same 

order. A variable is said to be integrated of order d, written I(d), if it must be differenced d 

times to be made stationary. Thus, a stationary variable is integrated of order zero, i.e., I(0), 

and a variable that must be differenced once to become stationary is integrated of order one 
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or I(1). A number of panel unit root tests have been developed to determine the order of 

integration of panel variables; however, these tests sometimes provide conflicting results. 

Consequently, we employ three of them.  

The Breitung (2000) test assumes that there is a common unit root process among the 

cross-sections, and considers a panel version of the Augmented Dicky-Fuller (ADF) unit root 

test that proposes a t-test statistic to examine the null hypothesis that the process is non-

stationary. (Thus, a statistic that is significantly different from zero is evidence of 

stationarity.) The Im et al. (2003) test has the advantage over the Breitung test in that it 

allows for a heterogeneous autoregressive unit root process across cross-sections by testing a 

statistic that is the average of the individual ADF statistics. Maddala and Wu (1999) proposed 

a panel unit root test based on Fisher (1932) that, like Im et al., allows for individual unit 

roots, but improves upon Im et al. by being more general and more appropriate for 

unbalanced panels. Maddala and Wu’s test (ADF-Fisher) is based on combing the p-values of 

the test-statistic for a unit root in each cross-sectional unit, is non-parametric, and has a chi-

square distribution. 

If all the variables are integrated of the same order, the next step is to test for 

cointegration. Engle and Granger (1987) pointed out that a linear combination of two or more 

nonstationary series may be stationary. If such a stationary linear combination exists, the 

nonstationary series are said to be cointegrated. The stationary linear combination is called 

the cointegrating equation and may be interpreted as a long-run equilibrium relationship 

among the variables.  

 The Pedroni (1999, 2004) heterogeneous panel cointegration test is an extension to 

panel data of the Engle-Granger framework. The test involves regressing the variables along 

with cross-section specific intercepts, and examining whether the residuals are integrated 

order one (i.e., not cointegrated). Pedroni proposes two sets of test statistics: (i) a panel test 



11 
 

based on the within dimension approach (panel cointegration statistics), of which four 

statistics are calculated: the panel v-, rho-, PP-, and ADF-statistic; and (ii) a group test based 

on the between dimension approach (group mean panel cointegration statistics), of which 

three statistics are calculated: the group rho-, PP-, and ADF-statistic. The seven test statistics 

are not always unanimous, but a consensus among the statistics often is interpreted as 

evidence in favor of cointegration. (A statistic that is significantly different from zero is 

evidence of cointegration.) In addition, Pedroni (1999) showed that the panel ADF and group 

ADF statistics have the best small-sample properties of the seven, and thus, provide the 

strongest single evidence of cointegration. 

If the variables are shown to be cointegrated, then Pedroni’s FMOLS estimator 

produces asymptotically unbiased estimates of the long-run elasticities and efficient, 

normally distributed standard errors. In addition, the estimations use a semi-parametric 

correction for endogeneity and residual autocorrelation. The FMOLS estimator is a group 

mean or between-group estimator that allows for a high degree of heterogeneity in the panel; 

hence, as well as producing consistent point estimates of the sample means, it allows for the 

testing of the null hypotheses for all cross-sections—i.e., it provides country specific 

estimates of all parameters accompanied by efficient standard normal errors.  

3. Pre-testing results  

 As discussed above, in the energy economics literature a number of papers have found 

variables like GDP per capita—as well as energy consumption and labor force, which should 

be highly correlated with carbon emissions and population, respectively—to be nonstationary 

in levels but stationary in first differences for panels of developed countries (e.g., Lee et al. 

2008; Apergis and Payne 2010). Thus, we have a strong a priori belief that the variables used 

here that are in levels should be panel I(1) as well. The new variables to be tested in this 
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study are the ones based on shares (population age structure and electricity’s share of 

residential energy consumption).  

 Table 2 shows the results from the panel unit root tests. As expected all of the 

variables are determined to be I(1) in at least two of the three tests.4  

Table 2 

 Table 3 displays the results of the cointegration tests for both carbon emissions from 

transport (Equation 3) and residential electricity consumption (Equation 4). There is strong 

evidence in favor of cointegration among variables both in Equation 3 (carbon emissions 

from transport) and in Equation 4 (residential electricity consumption) since, in both cases, 

four of the seven statistics are highly significant, including both panel and group ADF 

statistics.  

Table 3 

4. Main estimations and discussion 

Table 4 shows the estimated long-run elasticities for both carbon emissions from 

transport and residential electricity consumption. In both cases the common result from the 

literature that population is more important than affluence for environmental impact is 

confirmed. For transport, affluence has an elasticity of slightly greater than one—interesting 

for a panel of developed countries, most of which have reached saturation in personal 

transport. This elasticity most likely reflects affluence’s contribution to the demand trend of 

preferring more fuel intensive (lower mileage) and thus more carbon intensive vehicles, 

rather than its contributing to greater levels of vehicle ownership or miles driven per person.  

Age structure’s influence on transport emissions is significant and in some cases 

reasonably large. As expected, young adults (aged 20-34) are environmentally intensive. But 

the other age cohorts exert a negative effect—implying that population aging will have a 
                                                 
4 Interestingly, residential energy consumption was shown to be stationary in levels, i.e., panel I(0) (results not 
shown). Given the rather flat trajectory of this variables since 1971 for the OECD as a whole, displayed in 
Figure 1, perhaps that unit root test result is not surprising.  
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slightly improving environmental effect. However, given the relative sizes of the elasticity 

coefficients, aging will not likely lead to a reduction of emissions for developed countries in 

this important end-use sector; instead, real policy efforts to reduce the carbon intensity of 

transport are needed. 

Table 4 

The relative importance of population over affluence in terms of the magnitude of 

their elasticities is much greater for residential electricity consumption than for transport 

emissions—perhaps surprising since nearly all developed countries have shown an increasing 

trend in residential electricity consumption (for example, see Figure 7b in Liddle 2009). 

However, electricity’s share of residential energy consumption is significant and positive, and 

this variable is almost certainly influenced by affluence. Population age-structure’s influence 

on residential electricity consumption has an U-shaped pattern, with the youngest (20-34) and 

oldest (70 and older) having positive elasticity coefficients and the two middle age groups 

(35-49 and 50-69) having negative coefficients.  

The carbon emissions from transport results reported here provide some contrast to 

those presented in Liddle and Lung (2010). In their initial carbon emissions from transport 

regressions (their Models III and IV), they found a greater elasticity for affluence than for 

population, and not all the coefficients for age structure were statistically significant (they 

also used a few additional explanatory variables). However, a first difference model (Model 

VII in Liddle and Lung) produced a greater elasticity for population than for affluence 

(although the two values were much closer than found here), a positive elasticity for the share 

of population aged 20-34, and a negative elasticity for the share of population aged 35-64. 

Their results for residential electricity consumption (Models VI and VIII) are similar to those 

found here, and their estimated elasticities for affluence, population, and electricity’s share of 
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residential energy consumption from a first difference model (Model VIII) are quite similar 

in magnitude to those reported in Table 4. 

 Table 5 shows the long-run elasticity estimates for affluence and population by 

individual countries. For carbon emissions from transport nearly all countries conform to the 

finding that population has a greater impact than affluence—however, the relative importance 

of those two factors differ considerably by country (evidence of the importance of pooling 

countries for the purpose of estimates). A few countries have insignificant elasticity 

coefficients: Iceland and Norway for affluence and Belgium, Ireland, and the UK for 

population. Korea and Sweden have surprising and anomalous significant, negative 

coefficients for population. For residential electricity the country specific results are even less 

uniform—however, when population was statistically significant, it always had a greater 

impact than affluence. Affluence had an insignificant coefficient for five countries, and 

population was insignificant for nine countries.   

Table 5 

5. Projections 

 To close the analysis, we use the STIRPAT models estimated here to project into the 

future (to 2050) carbon emissions from transport and residential electricity consumption for 

the OECD as a whole, and to compare those projections to those made by a simpler 

STIRPAT model that does not consider the influence of population age structure change. To 

project population and age structure, we use the United Nations medium variant projections 

for their classification of more developed regions (which are done on five-year intervals to 

2050). Additionally, we assume that real GDP for the OECD will grow by 2.2 percent 

annually over this time-frame (the same assumption made by the Energy Information 

Administration in their Annual Energy Outlook 2009). Lastly, we assume electricity’s share 

of residential energy consumption, which has increased nearly linearly since 1971 for the 
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OECD as a whole, will continue to behave in that manner, and we apply a simple, time-trend 

regression (R-squared value 0.97, result not shown) to estimate its future values. Thus, in the 

projections, we do not assume that age structure will influence the economic growth rate or 

that economic growth will further affect electricity’s share of residential energy consumption. 

The primary purpose of the projections is to illustrate the importance of considering age 

structure change.   

 As an initial step, we re-estimate the STIRPAT models without the age structure 

variables; those results are shown in Table 6. The elasticities for affluence and population are 

now much closer in magnitude, and the elasticities for population are considerably smaller, 

than when age structure effects were considered.  

Table 6 

The projections from 2010-2050 for the two models (one that includes age structure 

effects and one that does not) are displayed in Figure 2a (for carbon emissions from 

transport) and Figure 2b (for residential electricity consumption). The figures also show the 

historical values from 1975-2005 as well as the back-cast estimations from the models over 

that time period. The projection models were calibrated (via a constant term) to the 2005 

historical levels.  

Figures 2a & 2b 

 A few generalizations can be made from these simple models. First, population aging 

in the OECD should have a lowering effect on carbon emissions from transport, but an 

increasing impact on residential electricity consumption. The model with age structure effects 

does a better job of “predicting” past (or historical) carbon emissions levels than the model 

without age structure effects. Both models (with and without age structure effects) are very 

close for residential electricity consumption (and close to historical levels as well) until 

around 2030, where the projections from the age structure model begin to rise faster. Perhaps 
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this variation in the difference between the projections with and without age structure effects 

for the two impacts (carbon emissions from transport and residential energy consumption) is 

not surprising, given both the expected continued aging of the OECD population and the 

different magnitudes and signs of the age structure effects reported in Table 4. For carbon 

emissions from transport the coefficients of all three cohorts beyond 35 are negative, and the 

four coefficients are negative in sum; whereas, for residential electricity consumption, the 

coefficients of the four cohorts nearly sum to zero, and the coefficient for the 70 and older 

cohort is positive.   

6. Conclusions 

 This paper builds upon Liddle and Lung (2010) by also focusing on consumption-

based environmental impacts and on the influence of age-structure change in a macro-level 

empirical setting. It advances the STIRPAT literature by testing for panel unit roots 

(nonstationarity) and by employing panel cointegration modeling and FMOLS estimations, 

thus, accounting for the highly inter-related and mutually causal nature of the IPAT variables.  

 For both carbon emissions from transport and residential electricity consumption, 

population exerted a greater impact than affluence—confirming a common result in the 

STIRPAT literature. Population age-structure’s influence was significant and varied across 

cohorts, and its profile was different for two dependent variables. For transport, young adults 

(20-34) were intensive (i.e., had a positive coefficient), whereas the other cohorts all had 

negative coefficients (but of different magnitudes). Age-structure had an U-shaped impact on 

residential electricity consumption since the youngest and oldest (20-34 and 70 and older) 

had positive coefficients, while the middle cohorts (35-49 and 50-69) had negative 

coefficients. Individual country elasticity estimates displayed a fair amount of diversity—

both in relative magnitudes and statistical significance—arguing for the importance of 

pooling countries to obtain robust estimates.  
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 Comparing projections from STIRPAT models that included and did not include age 

structure effects showed that: (i) projections of emissions and energy consumption may be 

improved by including age structure; and (ii) the expected aging of the OECD population has 

different influence on different types of environmental impact—aging may lower emissions 

from transport, but is likely to increase residential electricity consumption. Of course, 

projections could be further improved by including a system of equations that would consider 

feedback effects, like population aging’s effect on economic growth.  

Lastly, the models (both estimations and projections) analyzed here did not allow for 

the elasticities of affluence or population to change with development or size of population. 

That question of nonlinear relationships is often answered by including a squared term in 

regressions (e.g., either GDP per capita or population squared) and testing whether the 

coefficient for that squared term is negative and statistically significant. However, if the 

variables of interest are I(1) variables—as the tests conducted here indicated they likely are—

then regressions involving nonlinear transformations of such integrated variables could be 

spurious (Wagner 2008).  Thus, a better way to determine whether affluence’s or 

population’s environmental impact changes as countries develop may be to compare 

estimations from panels made up of poor and/or middle-level developing countries to 

estimations from panels of rich/developed countries. 
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Table 1. Variables used in the study. 
Symbol Definition Source 

Dependent variables 
CO2 
Transport 

Carbon dioxide emissions from 
transport in metric tons 
 

International Energy Agency 

Residential 
Electricity 

Total residential electricity 
consumption in kilowatt hours 
 

Ibid 

Independent variables 
A Affluence or real per capita GDP in 

USD and 2000 constant prices 
 

International Energy Agency. 
 

Sh Electric Share of residential energy 
consumption from electricity 
 

Ibid 

Population Total mid-year population 
 

World Bank Development Indicators 

Pop2034 Share of population between ages 20-
34 

Eurostat, OECD.Stat, and national statistical 
offices 
 

Pop3549 Share of population between ages 35-
49 
 

Ibid 

Pop5069 Share of population between ages 50-
69 
 

Ibid 

Pop70+ Share of population age 70 and older 
 

Ibid 

Note: All variables in natural log form.  
 
 

Table 2. Panel unit root tests. 
 Breitung t-test Im et al. W-stat test  ADF-Fisher  Chi-square 
 
Variables 

Levels First 
differences 

Levels First 
differences 

Levels First 
differences 

       
CO2 
Transport 

5.44 -13.07** 0.10 -21.24** 50.87 423.64** 

Residential 
Electricity 

10.74 -10.52** 0.88 -19.52** 56.38 391.89** 

Affluence 4.06 -12.08** -1.42 -18.26** 55.19 351.55** 
Population 7.58 0.27 -0.46 -2.33* 60.07 91.79** 
Pop 2034 1.19 0.09 -0.05 -2.35* 46.33 70.46* 
Pop 3549 4.22 0.98 0.13 -1.86* 43.34 67.10* 
Pop 5069 -1.29 -3.31** 0.23 -3.31** 53.82 85.34** 
Pop 70+ 3.55 -4.36** 1.35 -6.30** 51.54 119.22** 
Sh Electric 1.82 -14.69** 0.83 -24.04** 45.62 555.45** 

Note: Statistical significance is indicated by: **p <0.001 and * p <0.01. 
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Table 3. Pedroni panel cointegration tests for the individual models. 

Within dimension test statistics Between dimension test statistics 
CO2 Transport, Affluence, Population, Pop2034, Pop3549, Pop5069, Pop70+ 

Panel v-statistic 1.16 Group rho-statistic 6.86 
Panel rho-statistic 4.30 Group PP-statistic -4.89** 
Panel PP-statistic -2.67* Group ADF-statistic -8.22** 
Panel ADF-statistic -6.04**   
    

Residential Electricity, Affluence, Population, Pop2034, Pop3549, Pop5069, Pop70+, Sh Electric 
Panel v-statistic 1.08 Group rho-statistic 1.46 
Panel rho-statistic 0.23 Group PP-statistic -4.48** 
Panel PP-statistic -4.53** Group ADF-statistic -4.51 ** 
Panel ADF-statistic -3.80**   

 
Note: Statistical significance is indicated by: ** p <0.001 and * p <0.01.   
 
 
 
 
Table 4. Long-run elasticities from FMOLS. 
Dep. variable CO2 from Transport Residential Electricity 
Affluence 1.055** 

 
0.615** 

Population 2.347** 
 

2.686** 
 

Pop2034 0.818** 
 

0.219** 
 

Pop3549 -0.217* 
 

-0.418** 

Pop5069 -0.771** 
 

-0.404** 
 

Pop70+ -0.363* 
 

0.552** 
 

Sh Electric  0.259** 

Note: Statistical significance is indicated by: ** p <0.001 and * p <0.01.   
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Table 5. Long-run elasticities for affluence and population by country. FMOLS estimation. 
 
 CO2 from Transport  Residential Electricity 
Country Affluence Population Affluence Population 
     
Australia 0.525*** 0.778** 0.368*** 2.336**** 
Austria 0.680*** 4.567**** 0.979*** 3.042*** 
Belgium 0.984**** 0.314 1.593**** -2.770 
Canada 1.888**** 5.526**** 0.329 2.925**** 
Denmark 2.120**** 6.792* 0.836**** 1.027 
Finland 0.531** 7.409**** 0.062 11.481** 
Greece 0.958**** 3.127** 0.661**** 1.983 
Iceland -0.188 4.137*** 0.481*** -0.078 
Ireland 1.103**** -0.329 0.798**** 1.315 
Italy 1.341**** 2.637* 1.169**** 8.169**** 
Japan 0.746**** 2.621**** 0.467*** 3.395**** 
Korea 2.211**** -8.144**** 0.796** 11.324**** 
Luxembourg 0.995*** 4.485**** 0.708*** -1.135 
Netherlands 0.859**** 3.379*** 0.696** 3.774*** 
Norway 0.014 4.192*** 0.326 -0.309 
Portugal 1.497**** 1.667* 0.419** -0.024 
Spain 1.461**** 2.971**** 0.217 1.894*** 
Sweden 1.301**** -1.209** 0.055 1.550* 
Switzerland 1.351**** 1.213*** 0.446*** 1.591**** 
Turkey 1.234**** 1.138**** 0.549**** 1.152**** 
United 
Kingdom 0.731**** -0.026 0.925**** 0.136 
United 
States 0.867**** 4.386**** 0.648*** 6.320**** 

 
Note: Statistical significance is indicated by: **** p <0.001, *** p <0.01, ** p<0.05, and * 
p<0.10.   
 
 

 

Table 6. Long-run elasticities from models without age structure. FMOLS estimation. 
Dep. variable CO2 from Transport Residential Electricity 
Affluence 0.978* 

 
0.771* 

 
Population 1.342* 

 
1.745* 

Sh Electric  0.399* 
 

Note: Statistical significance is indicated by: * p <0.001.   
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Figure 1. The change in residential electricity consumption per capita, residential energy 
consumption per capita, CO2 emissions per capita, and CO2 emissions from transport per 
capita since 1971 for the OECD as a whole. (Data has been normalized to its 1971 value.) 
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Figure 2a. Projections (from 2010 to 2050 at five-year intervals) of carbon emissions from 
transport for the OECD as a whole using two STIRPAT models: one that includes age 
structure variables and one that does not. Historical emissions, as well as model back-casts, 
from 1975-2005 also are displayed. Projection models have been calibrated to the 2005 
historical levels.  
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Figure 2b. Projections (from 2010 to 2050 at five-year intervals) of residential electricity 
consumption for the OECD as a whole using two STIRPAT models: one that includes age 
structure variables and one that does not. Historical consumption, as well as model back-
casts, from 1975-2005 also are displayed. Projection models have been calibrated to the 2005 
historical levels.  
 


