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ABSTRACT  

This research determines if the declines in infant mortality with increased education are 

due to “indirect” effects that operate through improved birth weight and potentially causal or to 

“direct” effects, independent of birth weight. The data used are the 2001 US national linked 

birth-death files, African Mexican, and European American cohorts by sex. Education is 

dichotomized as low (i.e. high school and less) versus high (i.e. college and above) education. 

The analysis is conducted using Covariate Density Defined mixture of logistic regression, which 

explores “normal” and “compromised” births separately. Among “normal” births, mean birth 

weight increases significantly with high education, 27 to 108 grams. Mortality declines 

significantly due to “direct” effects of high education (by a factor of 0.4-to 0.96). Only 3 (of six 

possible) “normal” “indirect” effects are significant, and all increase infant mortality with higher 

education despite improvements in birth weight! European American births display the largest 

and Mexican American the smallest effects of education on birth outcomes. Among 

“compromised” births education has small and inconsistent effects. These results are consistent 

with the view that interventions targeting birth weight may not result in lower infant mortality 

rates. 

 

 



INTRODUCTION 

Measures of socioeconomic status, such as maternal education, are thought to be 

important correlates of body size and mortality (Floud, Wachter and Gregory 1990; Waaler 

1984). What is not clear is whether socioeconomic status influences mortality “directly”, 

independent of body size, or “indirectly” through its influence on the anthropometric measures. 

If the effects are “indirect”, then body size may be a part of the causal mechanism. If the effects 

are “direct”, then variation in body size is not causal. One well-established example is the 

relationship of socioeconomic level with birth weight and infant mortality. The correlation 

between birth weight and infant mortality is empirically so well documented that the current US 

policy to reduce infant mortality is to improve birth weight outcomes (Buehler et al. 1987; 

Institute-of-Medicine 1985; Mc Cormick 1985; US-DOHHS 2000). However, many 

theoreticians have argued that, at least among “normal” births, birth weight is not on the causal 

pathway to infant mortality (Mosely and Chen 1984; Wilcox and Russell 1990; Wise 2003). 

Recently a statistical method of determining if birth weight is or is not on the “causal” pathway 

to infant mortality has been developed (Gage et al. 2004), based on the Wilcox-Russell definition 

of “causality” (Wilcox and Russell 1990). The aim of this research is to determine if maternal 

education, a measure of socioeconomic level, affects infant mortality “indirectly” though birth 

weight, “directly”, or both. The analyses are conducted on three populations by sex, African, 

European, and Mexican Americans from the 2001 US birth cohort. 

BACKGROUND 

Wilcox and his colleagues argue (Wilcox and Russell 1990) that among “normal” births 

when the birth weight distribution shifts right or left due to a stressor (e.g. smoking during 

pregnancy; fetal development at altitude) that the birth weight specific mortality curve shifts in 



the same direction a similar amount so that there is no net change in infant mortality due to the 

shift in the birth weight distribution (Figure 1a). If so, birth weight cannot be on the “causal” 

pathway to infant mortality. In addition, they argue that there may be a consistent increase (or 

decrease) in infant mortality at all birth weights (independent of birth weight) due to a stressor 

(e.g., smoking during pregnancy; but not fetal development at altitude) (Figure 1b). Based on this 

definition it only need be shown that the shift in the birth weight distribution among “normal” 

births is not matched by a similar shift in the birth weight specific infant mortality curve to 

demonstrate that birth weight could be on the “causal” pathway to infant mortality (Figure 1c). 

This will be referred to here as an “indirect” effect of the stressor through birth weight on infant 

mortality. The birth weight independent effect will be called a “direct” effect of the stressor. The 

Wilcox-Russell hypothesis does not discuss whether “compromised” births behave in the same 

manner as “normal” births. Nevertheless, to fully examine the Wilcox-Russell hypothesis 

requires a method that distinguishes between “normal” and “compromised” births. Covariate 

Density Defined mixture of logistic regressions (CDDmlr) distinguishes between “normal” and 

“compromised” births and can estimate the significance of “indirect” as well as “direct” effects.  

Figure 1 about here 

The analysis presented below uses Covariate Density Defined mixture of logistic 

regressions (Gage et al. 2004). Conceptually, this method fits a multi-component Gaussian finite 

mixture model to the birth weight distribution, which divides the population into several (two in 

this case) latent subpopulations, and simultaneously fits a separate logistic regression on infant 

mortality by birth weight to each latent subpopulation. This procedure is useful when the latent 

subpopulations account for otherwise unobserved heterogeneity with respect to mortality. For the 

purposes of identification the subpopulation accounting for the majority of individuals is labeled 



the primary ( p ) subpopulation and the remaining minority component is labeled the secondary 

( s ) subpopulation. The logistic regressions on infant mortality are parameterized as second-

degree polynomials of birth weight to account for the reverse-J shaped relationship of birth 

weight and infant mortality. Previous applications indicate that a) the primary subpopulation 

represents births undergoing “normal” fetal development given its location in the center of the 

birth weight distribution; b) the secondary subpopulation accounts for most low birth weight and 

macrosomic births and is consequently interpreted as accounting for births undergoing 

“compromised” fetal development (Figure 2a); and c) the two components identified by the finite 

Gaussian mixture model are heterogeneous with respect to infant mortality with the 

“compromised” subpopulation consistently displaying lower birth weight specific mortality but 

higher overall mortality due to the less favorable distribution of birth weight (Figure 2b) (Gage et 

al. 2004). 

Figure 2 about here 

Here we expand this basic model by adding exogenous covariates to the density 

submodel and to the logistic regressions. In the case presented here the covariate is education: 

low education versus high education. In the density submodel, all parameters, i.e. the mixing 

proportion, means and variances are each defined as a function of education. In addition, 

education is added to the logistic regressions, as a covariate on the constant, linear and squared 

terms of a second-degree polynomial of birth weight. Finally we define birth weight within each 

logistic regression as the Z-score based upon the Gaussian subpopulation that it represents. The 

result is a model that can test the Wilcox-Russell definition (Wilcox and Russell 1990) of 

“direct” and “indirect” effects (Figure 1). After standard transformation of the quadratic 

covariates to account for correlation inherent in this specification, the education interaction 



covariate on the constant of the birth weight polynomial can be interpreted as a “direct” effect 

(constant at all birth weights). The education interaction covariate on the linear birth weight term 

accounts for the shift, left or right, in the birth weight specific mortality curve with respect to 

mean birth weight. Due to the use of Z-scores of birth weight, an insignificant interaction on the 

linear birth weight interaction term indicates that the birth weight specific mortality curve shifts 

in concert with birth weight density, i.e. no “indirect” effect of education as argued by the 

Wilcox-Russell hypothesis (Wilcox and Russell 1990). The education interaction on the squared 

term accounts for changes in shape of the birth weight specific infant mortality curve relative to 

the Z-scored birth weight distribution. This is not considered in the Wilcox-Russell theory, but 

represents a second way that birth weight specific infant mortality could be uncoupled from the 

Z-scored birth weight density. Again an insignificant interaction term indicates no “indirect” 

effect, due to the use of Z-scored birth weight. Here we examine shift and shape effects together, 

as potential “causal” effects, since they both represent an uncoupling of the birth weight density 

and birth weight specific mortality. A formal definition of this model is provided in the methods. 

 

DATA AND METHODS 

Data Source 

The data for these analyses were obtained from the 2001 national linked birth-death files. 

Race and ethnic origin is based on mother’s reported race and ethnic origin. Births with missing 

information or gestational age <20 weeks or birth weight <500 grams are excluded. Summary 

statistics for the birth cohorts of interest are presented in Table 1.  

Table 1 about here 

Statistical Model  



Formally the model is defined as follows. The probability of death ( y ) is a product of a) 

the density distribution of the birth weight ( x ) given the exogenous dichotomous covariate ( z ), 

and b) the conditional mortality given x  and z : 
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In the case of two Gaussian subpopulations (labeled as p  and s ), )1( x|z;θf  is expressed as:  
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where sπ  is the proportion of births belonging to the subpopulation s . For pi =  and s , N~  

represents the Gaussian density, truncated at 500 grams, with mean iµ  and variance iσ . And the 

probability of death conditioned on x  and z  is given by: 
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where *
ix  is the standardized x  using the respective iµ  and iσ , iP  is the probability of death for 

an infant with birth weight ( x ) and covariate z  in subpopulation i  given by a quadratic logistic 

form:  
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and sq  is the conditional probability of that infant belonging to the subpopulation s . The density 

submodel )1( x|z;θf  determines that 
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Model Fitting 

 The model was fitted to individual data by the method of maximum likelihood (ms 

routine in the SPLUS statistical library). The likelihood functions, as defined by Eqs. 1-11, were 

used except that the second-degree polynomial of subpopulation specific mortality curve was 

fitted in its respective linear form, and then transformed to the non-linear form after fitting. 

Overall, there are 22 parameters for the model with a dichotomous covariate z  and only 11 for 

the model without z . Bias-adjusted 95% confidence intervals for the parameters and estimates 

were estimated from 200 bootstrap samples.  

Decomposition of the Maternal Education Effect on Infant Mortality 

Decomposition of the maternal education effect was carried out in two steps. First, the 

total absolute maternal education effect on infant mortality was decomposed into deaths 

attributable to differences in the mixing proportion and rate effects for “normal” (i.e. 

subpopulation p ) and “compromised” births (i.e. subpopulation s ) using the standard Kitagawa 

decomposition method (Gupta 1978). 

Then the maternal education effect on the overall infant death (integrated across all birth 

weights) in each subpopulation was further decomposed into two multiplicative components by 

factoring the respective subpopulation specific relative risk ( iRR , for pi =  and s ) of overall 

infant death for mothers receiving higher education (i.e. college and above, 1=z ) as compared 



to that for mothers receiving lower education (i.e. high school and below, , 0=z ) into a “direct” 

factor ( 1,iF ) and an “indirect” factor ( 2,iF ) of maternal education: 
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1,iF  is a constant and therefore it is independent of birth weight. 2,iF  represents the combined 

effects of all birth weight related factors on the mortality disparity between infants born to 

mothers with different levels of education in subpopulation i . In particular, birth weight related 

factors include differences in shape and horizontal shift of the reverse-J-shaped standardized 

birth weight specific mortality curve, as well as non-linear transformation between the 

probability and the logit of infant death at any standardized birth weight.  

 

RESULTS 

Education influences the birth weight distribution through changes in the mean and 

standard deviation of both the primary and secondary birth weight distributions (Figure 3, Table 

3). The mean of the primary subpopulation increases significantly with education in all birth 

cohorts examined. The increase is largest in European Americans (about 100 grams) and smallest 

in Mexican Americans (about 30 grams). The standard deviation of the primary subpopulation 

birth weight density declines in the European (about 20 grams) and Mexican (perhaps 4 grams) 

American cohorts, but these declines are significant only for European Americans. Among 

African American births, the primary standard deviation increases, in both sexes (perhaps 9 



grams), but is significant only in males. Overall these shifts in the birth weight distribution 

represent improved birth outcomes using the standard metrics, such as mean birth weight, or the 

estimated low birth weight rate (proportion of births less then 2500 grams) (Figure 3a). In 

particular, the low birth weight rate declines in the primary subpopulation of all populations 

(Table 2). 

Figure 3 about here 

Table 2 about here 

The mean birth weight of the secondary subpopulation increases significantly in the 

European American cohorts (227 to 253 grams) (Figure 3b, Table 2). The standard deviation of 

secondary birth weight declines significantly with education among the European American 

cohorts (by 51 to 66 grams), but increases significantly in the African American cohorts (by 114 

to 152 grams). Overall, the increase in mean birth weight and decline in the standard deviation 

clearly improve European American birth weight densities. The decline in the secondary low 

birth weight rate in these populations exceeds 8% (Table 2). The increase in the standard 

deviation among secondary African American births has little effect on the low birth weight rate 

(Table 2), since the mean of secondary birth weight is below 2500 grams and the density is 

truncated at 500 grams. Consequently, among African and Mexican American birth cohorts there 

is little or no change in the secondary birth weight densities associated with educational level. 

Finally, higher education is associated with an increase in the proportion of primary 

births. Although this is typically less than 1%, and is only significant in European and African 

American male births, nevertheless it represents an improvement in birth outcomes using the 

standard metrics of mean birth weight and the low birth weight rate since the primary 

subpopulations have a higher mean and smaller standard deviation, and hence a lower low birth 



weight rate. Consequently, considering all birth weight density factors, overall birth outcomes 

improve significantly with higher education in all populations. 

 The logistic regression results indicate that mortality generally declines with increasing 

education (Figure 4). Kitagawa decomposition attributes the majority of the absolute decline in 

mortality with education to the primary subpopulation in all birth cohorts accept Mexican 

American females (Table 3, Figure 4a). Changes in secondary subpopulation mortality are 

smaller and are significant only in the European American birth cohorts (Table 3, Figure 4b). 

Finally the mixing proportion effect reduces infant mortality in most birth cohorts, significantly 

in African and European males. However, this latter effect is small.   

Figure 4 about here 

Table 3 about here 

Further decomposition into “direct” (independent of birth weight) and “indirect” 

(associated with changes in birth weight) effects indicates a strong “direct” effect in the primary 

subpopulation, which reduces infant mortality (Table 4). This direct effect is significant in all 

birth cohorts accept Mexican American males. There is also an “indirect” effect in the primary 

subpopulation, which tends to increase mortality with higher education. It is significant in all 

three female cohorts but no male birth cohorts. That the ”indirect” effects increase mortality with 

higher education is surprising given that the primary birth weight distribution improves with 

increased education as described above. The results for the secondary subpopulation are less 

consistent. In general a “direct” effect in the secondary subpopulation reduces mortality but is 

significant only among European and African American males and Mexican American females. 

The “indirect” effect generally increases mortality with education but is only significant in 

European and African American males. Again, this “indirect” effect is not consistent with the 



improvements in the birth weight distribution, observed in European American male secondary 

birth weight densities described above. African American male secondary birth weight densities 

are largely unaffected by education. Perhaps the lack of consistently significant results is due to 

the relatively small absolute effects associated with the secondary subpopulation (Table 4). 

Table 4 about here 

Overall, effects of education on mortality are shown in Figure 4c. Note that at low birth 

weights low education is associated with lower mortality, while at normal birth weights low 

education is associated with higher mortality, and higher mortality overall (Table 2) compared to 

the high education subpopulation.  

 

DISCUSSION 

There are limitations to the validity of comparisons across race and ethnicity. In 

particular, these analyses are not controlled for such variables as maternal age, parity, etc. which 

might mediate the effects. Never the less a number of differences stand out. First, education 

appears to have little effect on Mexican American birth outcomes compared to the other birth 

cohorts. The effect of higher education on the Mexican American birth weight distributions tends 

to be small. Primary mean birth weight does increase but the effect is only about 1/3 of the effect 

observed in European and African American birth cohorts. The impact of education on mortality 

is smaller as well. In fact an education effect is only significant for the male cohort. It is not clear 

why this population does not respond to the higher levels of education like the other birth 

cohorts. However, Mexican American birth cohorts have the lowest observed infant mortality 

rate of any of the populations examined (Table 1). In addition many Mexican American births 

are to Mexican born mothers. Perhaps the differences in response to education noted above are a 



part of the “nativity complex” that is thought to influence infant mortality in recent migrant 

populations (Hummer et al. 1999),  

Second, education increases the African/European American racial disparity in infant 

mortality. That is the high education population has a larger racial differential both in absolute 

difference in the death rates and relative risk! In particular, the low education group has a racial 

disparity (relative risk) of 1.64 and 1.59 respectively for females and males, while the high 

education group has a racial disparity of 2.5 and 2.6 for females and males respectively. The fact 

that racial disparities increase with increasing education levels has been observed in a number of 

settings (Sngh, and Yu 1995; Din-Dzietham and Hertz-Picciotto 1998). Our decomposition 

attributes the majority of this increase in the racial disparity to the “compromised” 

subpopulation. The mixing proportion favors African Americans although this is significant only 

in males. The “normal” subpopulation contributes slightly to the racial differential in that 

mortality declines more with increasing education among European Americans, but this 

difference is not significant for either sex. The major contributor is that mortality improves 

significantly among “compromised” European American births and not among “compromised” 

African American births with increased education. Decomposition into “direct” and “indirect” 

effects is not consistent across the sexes in the “compromised” subpopulation, so it is unclear 

whether these are birth weight dependent or birth weight independent effects. Additional analysis 

will be necessary to determine if these racial and ethnic differences are consistent, as well as, 

how these differences are influenced by confounders such as maternal age and parity etc. On the 

other hand, comparison across education within populations has fewer limitations and is much 

more consistent. 



It is well documented that birth weight increases and infant mortality declines with 

increased maternal education (Gortmaker 1979; Cramer 1987; Sngh, and Yu 1995; Din-

Dzietham and Hertz-Picciotto 1998), although infant mortality has been reported to increase 

again with very high levels of education (Shoham-Yakubovich and Barel 1988; Haglund 2008). 

The results presented above are consistent with these general findings. The division of education 

levels by less then 12 completed years of education versus greater than 12 years of education 

does not allow an examination of birth weight and infant mortality at very high educational 

levels. Overall, birth weight increases with educational level, as indicated by increased mean 

birth weight, declines in the standard deviation of birth weight and hence a decline in the low 

birth weight rate. These are largely driven by the “normal” subpopulation of births, the dominant 

group occurring predominately in the center of the birth weight distribution. The “compromised” 

births, which accounts for the majority of births in the tails of the birth weight distribution, but 

also accounts for births at all birth weights, is more heterogeneous. European American 

“compromised” births weights improve, but African and Mexican American “compromised” 

births remain more or less constant. 

The decline in infant mortality with higher education is largely due to the “normal” 

subpopulation. These beneficial effects are entirely independent of the changes in the birth 

weight distribution. All of the birth weight dependent effects tend to increase infant mortality 

despite general improvements (or little change) in the birth weight density! These birth weight 

dependent effects are overwhelmed by the “direct” effects of education, so overall infant 

mortality declines with increasing education. However, at low birth weights, less maternal 

education is associated with lower infant mortality. This is the “educational paradox” which has 

been reported by others (Gisselmann 2005). Why should the socially disadvantaged births have 



lower infant mortality at low birth weights, that is those birth weights where social advantage 

and aggressive medical intervention might have the most beneficial effect? Further, these results 

indicate that the current U.S. National policy of reducing infant mortality by reducing the low 

birth weight rate (US-DOHHS, 2000} may be ineffective or even detrimental. The policy could 

increase mortality, if the interventions chosen to improve birth weight do not also happen to 

carry along the birth weight independent beneficial effects. Finally, education could provide a 

more beneficial effect if the birth weight dependent effects could be avoided. 

Close examination of the “indirect” effects in the “normal” subpopulation indicates that 

the birth weight specific increase in infant mortality is due to the birth weight specific mortality 

curve becoming increasingly (more severely) reverse J-shaped with increasing education. 

Mortality improves at the optimum birth weight due to the “direct” effects, but increases more 

rapidly at relative (Z-scored) birth weights away from the optimum. This occurs regardless of the 

changes in standard deviation of primary birth weight, i.e. in European American females the 

standard deviation declines with education, among African American females it increases and 

among Mexican American females it remains the same. It is possible that this increased reverse 

J-shape, is a result of relaxed fetal loss among the high education populations, resulting in lower 

average vitality at live birth particularly at the relatively low and high birth weights. If this is 

correct, then the detrimental “indirect” effects might also be viewed as beneficial, a result of 

improved in utero survival. This would resolve some of the issues presented above. For example, 

it resolves the educational paradox, which is no longer a paradox but the result of benefits (in this 

case improved in utero survival) to the advantaged population. It implies that the birth weight 

dependent effects of education cannot be avoided since they are due to an unobserved part of the 

beneficial effects of education. And finally this interpretation implies that current US policy (US-



DOHHS, 2000) would not be detrimental. On the other hand, if birth weight is not on the causal 

pathway to infant mortality then improving birth weight may have little effect on infant 

mortality. 

The results and interpretations presented above provide statistical support to the 

hypothesis of Wilcox and others (Wilcox and Russell 1990) that birth weight is not on the 

“causal” pathway to infant mortality. In particular, the statistical evidence indicates strong 

associations of birth weight with education, but that the improvements in infant mortality are a 

result of birth weight independent effects. The facts that a) significant changes in the birth weight 

density are not always accompanied by a change in infant mortality, b) the “indirect” and 

potential “causal” effects which are significant are in the wrong direction, and c) alternative 

explanations of increasing infant mortality with increased birth weight based on unobserved 

heterogeneity (fetal loss) all support the hypothesis that birth weight is not on the “causal” 

pathway to infant mortality. Similar results have been found using the same methods and 

maternal age as an instrument instead of maternal education (Gage et al. 2009). In this case, 

however, no convincing evidence for “indirect” effects was observed at all in either “normal” or 

“compromised” births.  

While CDDmlr appears to provide a reasonable test of Wilcox’s theory, there are some 

differences and limitations. In particular, Wilcox’s theory implicitly assumes that shape effects 

which depend upon the standard deviation of birth weight and the shape of birth weight specific 

mortality curve are constant among “normal” births. CDDmlr relaxes this assumption and allows 

the standard deviation to change and the shape of the birth weight specific mortality curve to 

change. We also considered this potential uncoupling of birth weight and mortality to be 

potential “causal” effects in addition to the shift effects described by Wilcox. All of the indirect 



effects reported here are driven by changes in shape and not a differential shift in the birth 

weight density and the infant mortality curve. A limitation of Wilcox’s original theory, and 

CDDmlr as defined here, is that they do not completely account for all of the potential influence 

of birth weight on infant mortality. In particular, Wilcox’s original theory assumes that the 

reverse J-shaped birth weight specific mortality curve is constant (Wilcox and Russell 1990). It 

is possible that birth weight is responsible for the reverse J-shape of the infant mortality curve. 

Recently, Basso (Basso, Wilcox and Weinberg 2006) has provided an extension of the original 

theory that attributes the reverse J-shape to confounding. CDD mixture of logistic regression 

could be used to explore this possibility as well. However this is beyond the scope of the present 

paper. 

The advantage of CDDmlr is that it can be used to exquisitely define changes in the birth 

weight density and the infant mortality curve, and distinguish between “direct” and “indirect” 

(through birth weight) effects of a covariate while controlling for unobserved heterogeneity, 

which we have interpreted in the birth weight case as “normal” and “compromised” fetal 

development. This allows the identification and decomposition of trends in birth weight and 

infant mortality into a number of components, which do not necessarily reflect the overall trends. 

Here this has allowed us to identify “indirect” effects of education, which are in the opposite 

direction of the overall trends. The analysis above, as well as, another application using maternal 

age (Gage et al. 2009) all indicate that the association between birth weight and infant mortality 

is not necessarily “causal”. It would be useful to repeat these analyses using gestational age in 

place of birth weight. While CDDmlr was designed specifically to examine the issue of causality 

in birth outcomes it is not limited to this application. Compared to conventional regressions 

CDDmlr is useful wherever the density of a potentially mediator, like birth weight is well 



described by a finite mixture model, and this mixture accounts for some unmeasured 

heterogeneity in the ultimate dependent variable, such as infant mortality. If so then the 

introduction of additional covariates can test if the mediator could be causal or not. For example, 

in a case similar to birth weight, another biomarker, body mass index, a measure of obesity, is 

closely associated with mortality in adults (Waaler 1984) again in a reverse J-shaped pattern. 

Recently, it has been shown that the relationship between body mass index and mortality is not 

fixed but relative to the mean of body mass index (Su 2005). This is very similar to the dynamics 

of birth weight and infant mortality, and the original basis for arguing that birth weight was not 

on the causal pathway to infant mortality (Wilcox and Russell 1990). 

 

CONCLUSIONS 

Education, a surrogate measure of socioeconomic status, is associated with significant 

changes in birth outcomes including infant mortality. 

1. Overall birth outcomes, such as mean birth weight, standard deviation in birth weight and 

low birth weight rate improve with higher education. 

2. Mortality declines with higher educations. This is entirely independent of the changes in 

birth outcomes, and due to “direct” effects. 

3. All significant “indirect” effects (potentially causal through birth weight), tend to 

increase infant mortality even though birth outcomes generally improve. These increases 

in mortality are overwhelmed by the beneficial “direct” effects. This counter intuitive 

“indirect” effect is due to increased severity of the reverse J-shaped birth weight specific 

mortality curve. As a result infant mortality among the less educated tends to be lower at 

low birth weights, i.e. the education paradox. This could be the result of relaxed fetal 



selection particularly at the low and high birth weights among the higher educated 

population. Thus these indirect effects could be the result of uncontrolled heterogeneity, 

rather then “causal” forces operating through birth weight. 

4. Birth outcomes and infant mortality do not appear to be as strong among the Mexican 

American population, compared to African and European American births. 

5. African /European disparities increase with educational level due largely to 

improvements in mortality among “compromised” births among European Americans but 

not African American births. 
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FIGURE CAPTIONS 

 

Figure 1. Graphical representation of the Wilcox-Russell definition of “causality”. 

Panel a represents a shift in birth weight that is accompanied with a shift in the birth 

weight specific mortality curve so that no change in mortality occurs (birth weight is not 

“causal”). Panel b represents a birth weight independent change in infant mortality, 

(direct effect, birth weight is not “causal”). Pane c represents a shift in birth weight that is 

not accompanied by an identical shift in the birth weight specific mortality curve so that 

mortality does change. 

 

Figure 2. Graphical representation of Covariate Density Defined mixture of logistic 

regressions as applied to birth weight. The results presented are 2001 European American 

males based on analyses developed below in this paper. Totals are solid lines. Short 

dotted lines represent the primary subpopulation, and longer dashed lines the secondary 

subpopulation. Corresponding fine lines are 95% confidence limits (sometimes they 

overlap the predicted line and are not visible).  Panel a represents the density of total birth 

weight as the sum of two Gaussian densities, primary and secondary.  Secondary is 

considered to represent “compromised” births because it accounts for the most low birth 

weight and most macrosomic infants. Panel b represents characteristic total, as well as, 

primary and secondary birth weight specific mortality curves.  Results for the other 5 

populations are similar. 

 



Figure 3. Shift in birth weight density due to higher education: European American 

males.  The solid line represents low education, and the dashed line high education. 

Corresponding fine lines are 95% confidence limits (sometimes they overlap the 

predicted line and are not visible).  Panel a represents the primary subpopulation, panel b 

the secondary subpopulation and panel c the total population. African American males 

and females, and European American females are similar. The shift for Mexican 

Americans is much smaller. 

 

Figure 4. Shifts in birth weight specific due to higher education: European American 

males. The solid line represents low education, and the dashed line high education. 

Corresponding fine lines are 95% confidence limits (sometimes they overlap the 

predicted line and are not visible).  Panel a represents the primary subpopulation, panel b 

the secondary subpopulation and panel c the total population. African American males 

and females, and European American females are similar. The shift for Mexican 

Americans is much smaller. 
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Table 1 Descriptive statistics for the sample populations 
 

# of Births CDR mean 5% 25% median 75% 95%

non-His. Eur. Am. F. 432,034 4.73 3278 2410 2977 3290 3628 4111

non-His. Eur. Am. M. 454,249 6.36 3393 2460 3090 3430 3751 4253

non-His. Af. Am. F. 162,394 7.72 3061 2055 2778 3095 3420 3912

non-His. Af. Am. M. 167,571 10.22 3165 2097 2863 3210 3544 4038

Mex. Am. F. 222,480 3.57 3299 2495 3005 3315 3610 4090

Mex. Am. M. 230,989 4.45 3393 2523 3090 3402 3735 4224

# of Births CDR mean 5% 25% median 75% 95%

non-His. Eur. Am. F. 583,889 2.45 3390 2580 3090 3402 3714 4180

non-His. Eur. Am. M. 614,327 3.05 3512 2637 3204 3540 3856 4338

non-His. Af. Am. F. 89,290 6.04 3150 2154 2863 3203 3515 4005

non-His. Af. Am. M. 92,281 7.86 3266 2211 2977 3317 3655 4155

Mex. Am. F. 43,746 2.97 3322 2523 3033 3335 3629 4111

Mex. Am. M. 45,275 3.31 3424 2551 3135 3446 3761 4252

Birth Weight Distribution (g) for z=0 birth cohort

Birth Weight Distribution (g) for z=1 birth cohort

non-His. = non-Hispanic; Eur. = European; Af. = African; Mex. = Mexican; Am. = American; F. = females; M. = males

CDR = Crude death rate (deaths per 1000 births)

Birth Cohort
high school and below (z=0)

college and above  (z=1)
Birth Cohort

 
 
 



Table 2 Model-estimated change in infant birth weight distribution and mortality characteristics with bias-adjusted 95% confidence intervals: 
infants born to mothers with college and above education vs. infants born to mothers with high school and below education 
 

µp (g) 103 ( 101 ; 105 )* 88 ( 83 ; 93 )* 27 ( 22 ; 31 )* 108 ( 106 ; 110 )* 95 ( 91 ; 99 )* 35 ( 30 ; 41 )*

σp (g) -20 ( -22 ; -18 )* 7 ( 1 ; 11 )* -3 ( -10 ; 3 ) -19 ( -22 ; -17 )* 9 ( 3 ; 14 )* -4 ( -12 ; 2 )

Pri. LBW -2.0 ( -2.1 ; -1.9 )* -2.0 ( -2.3 ; -1.7 )* -0.5 ( -0.7 ; -0.3 )* -1.4 ( -1.5 ; -1.3 )* -1.5 ( -1.8 ; -1.3 )* -0.4 ( -0.5 ; -0.2 )*

Pri. DR -1.8 ( -2.0 ; -1.6 )* -1.6 ( -2.2 ; -1.1 )* -0.1 ( -0.6 ; 0.5 ) -2.2 ( -2.4 ; -1.9 )* -2.2 ( -2.7 ; -1.5 )* -0.8 ( -1.4 ; -0.3 )*

πs (%) -0.4 ( -0.9 ; 0.0 ) -0.8 ( -1.6 ; 0.1 ) -0.3 ( -1.5 ; 0.9 ) -0.8 ( -1.2 ; -0.4 )* -1.6 ( -2.4 ; -0.8 )* 0.2 ( -1.0 ; 1.7 )

µs (g) 253 ( 202 ; 304 )* -65 ( -247 ; 97 ) -36 ( -183 ; 73 ) 227 ( 169 ; 273 )* -136 ( -317 ; 20 ) 4 ( -119 ; 126 )

σs (g) -51 ( -80 ; -28 )* 114 ( 41 ; 175 )* -24 ( -101 ; 47 ) -66 ( -87 ; -42 )* 152 ( 93 ; 217 )* -29 ( -95 ; 29 )

Sec. LBW -8.3 ( -9.9 -6.5 )* -0.5 ( -3.4 ; 2.7 ) 1.3 ( -2.7 ; 6.3 ) -7.6 ( -9.1 ; -5.5 )* 0.4 ( -2.4 ; 3.5 ) -0.2 ( -4.5 ; 4.3 )

Sec. DR -8.7 ( -13.1 ; -5.2 )* 0.2 ( -6.1 ; 6.2 ) -6.3 ( -13.0 ; 1.7 ) -16.0 ( -19.5 ; -11.8 )* 4.1 ( -3.2 ; 12.7 ) -5.1 ( -11.0 ; 2.9 )

Tot. LBW -2.6 ( -2.6 -2.4 )* -2.3 ( -2.5 ; -2.0 )* -0.5 ( -0.7 ; -0.3 )* -2.1 ( -2.2 ; -2.1 )* -2.2 ( -2.4 ; -2.0 )* -0.3 ( -0.5 ; -0.1 )*

Tot. DR -2.3 ( -2.5 ; -2.0 )* -1.7 ( -2.3 ; -1.0 )* -0.6 ( -1.1 ; 0.0 ) -3.3 ( -3.6 ; -3.0 )* -2.4 ( -3.0 ; -1.6 )* -1.1 ( -1.7 ; -0.5 )*

LBW = % of births less than 2500 g

non-His. = non-Hispanic; Eur. = European; Af. = African; Mex. = Mexican; Am. = American; F. = females; M. = males

DR = death rate (deaths per 1000 births)

Mex. Am. Non-His. Eur. Am. Non-His. Af. Am. Mex. Am.

Pri. = Primary Subpopulation; Sec. = Secondary Subpopulation; Tot. = Total Population

Birth Cohort
Females Males

Non-His. Eur. Am. Non-His. Af. Am.

* Parameter is significantly different from 0.  
 
 
 



Table 3 Kitagawa decomposition of infant mortality (deaths/1000 births) disparity with bias-adjusted 95% confidence intervals due to maternal 
education effect # 
 

non-His. Eur. Am. F. -0.08 ( -0.16 ; 0.00 ) -0.52 ( -0.79 ; -0.33 )* -1.68 ( -1.90 ; -1.47 )* -2.28 ( -2.54 ; -2.06 )*

non-His. Eur. Am. M. -0.19 ( -0.28 ; -0.09 )* -1.09 ( -1.34 ; -0.78 )* -2.03 ( -2.26 ; -1.78 )* -3.31 ( -3.58 ; -3.03 )*

non-His. Af. Am. F. -0.23 ( -0.51 ; 0.02 ) 0.02 ( -0.58 ; 0.59 ) -1.50 ( -2.04 ; -1.05 )* -1.71 ( -2.34 ; -0.97 )*

non-His. Af. Am. M. -0.75 ( -1.16 ; -0.34 )* 0.38 ( -0.30 ; 1.20 ) -2.00 ( -2.48 ; -1.31 )* -2.37 ( -3.07 ; -1.57 )*

Mex. Am. F. -0.05 ( -0.26 ; 0.14 ) -0.42 ( -0.89 ; 0.12 ) -0.12 ( -0.59 ; 0.49 ) -0.60 ( -1.11 ; 0.01 )

Mex. Am. M. 0.04 ( -0.28 ; 0.34 ) -0.41 ( -0.91 ; 0.29 ) -0.77 ( -1.26 ; -0.25 )* -1.14 ( -1.72 ; -0.51 )*

non-His. = non-Hispanic; Eur. = European; Af. = African; Mex. = Mexican; Am. = American; F. = females; M. = males

*: Estimate is significantly different from 0

Secondary Primary 

Rate Effect
Mixing Proportion Effect

#: Based on estimated death rates in Table 2

Total DisparityBirth Cohort

 



Table 4 Subpopulation specific relative risk of infant mortality due to higher maternal education decomposed into direct and indirect 
multiplicative factors with bias-adjusted 95% confidence intervals # 
 

non-His. Eur. Am. F. 0.47 ( 0.42 ; 0.52 )* 0.40 ( 0.35 ; 0.47 )* 1.16 ( 1.03 ; 1.36 )*

non-His. Eur. Am. M. 0.48 ( 0.44 ; 0.52 )* 0.45 ( 0.37 ; 0.56 )* 1.07 ( 0.87 ; 1.21 )

non-His. Af. Am. F. 0.66 ( 0.57 ; 0.76 )* 0.46 ( 0.37 ; 0.57 )* 1.45 ( 1.22 ; 1.76 )*

non-His. Af. Am. M. 0.63 ( 0.55 ; 0.74 )* 0.58 ( 0.47 ; 0.72 )* 1.07 ( 0.86 ; 1.30 )

Mex. Am. F. 0.94 ( 0.74 ; 1.25 ) 0.55 ( 0.10 ; 0.90 )* 1.69 ( 1.03 ; 8.65 )*

Mex. Am. M. 0.69 ( 0.49 ; 0.89 )* 0.96 ( 0.65 ; 1.33 ) 0.72 ( 0.50 ; 1.02 )

non-His. Eur. Am. F. 0.66 ( 0.55 ; 0.77 )* 1.33 ( 0.50 ; 3.10 ) 0.50 ( 0.18 ; 1.55 )

non-His. Eur. Am. M. 0.54 ( 0.47 ; 0.63 )* 0.23 ( 0.07 ; 0.57 )* 2.31 ( 1.27 ; 4.71 )*

non-His. Af. Am. F. 1.01 ( 0.83 ; 1.20 ) 0.53 ( 0.07 ; 3.34 ) 1.88 ( 0.25 ; 15.57 )

non-His. Af. Am. M. 1.08 ( 0.94 ; 1.28 ) 0.14 ( -0.01 ; 0.74 )* 7.60 ( 2.93 ; 40.89 )*

Mex. Am. F. 0.71 ( 0.46 ; 1.10 ) 0.22 ( 0.07 ; 0.96 )* 3.23 ( 0.30 ; 23.04 )

Mex. Am. M. 0.80 ( 0.59 ; 1.16 ) 0.47 ( 0.12 ; 1.74 ) 1.68 ( 0.54 ; 4.07 )

Birth Cohort

Birth Cohort

Primary Subpopulation

Relative Risk Direct Factor Indirect Factor

Indirect Factor

*: Estimate is significantly different from 1

Secondary Subpopulation

#: Based on estimated death rates in Table 2

non-His. = non-Hispanic; Eur. = European; Af. = African; Mex. = Mexican; Am. = American; F. = females; M. = males

Relative Risk Direct Factor

 
 
 
 
 


