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Università Bocconi, Milan, Italy

nicola.barban@unibocconi.it

Francesco C. Billari

DONDENA “Carlo F. Dondena” Centre for Research on Social Dynamics,

Department of Decision Sciences and IGIER
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Abstract

In this article we compare two techniques that are widely used in the analysis of
life course trajectories, i.e. latent class analysis (LCA) and sequence analysis (SA).
In particular, we focus on the use of these techniques as devices to obtain classes
of individual life course trajectories. We first compare the consistency of the clas-
sification obtained via the two techniques using an actual dataset on the life course
trajectories of young adults. Then, we adopt a simulation approach to measure
the ability of these two methods to correctly classify groups of life course trajecto-
ries when specific forms of “random” variability are introduced within pre-specified
classes in an artificial datasets. In order to do so, we introduce simulation opera-
tors that have a life course and/or observational meaning. Our results contribute
on the one hand to outline the usefulness and robustness of findings based on the
classification of life course trajectories through LCA and SA, on the other hand to
illuminate on the potential pitfalls of actual applications of these techniques.

1 Introduction

In recent years, there has been a significantly growing interest in the holistic study of life
course trajectories, i.e. in considering whole trajectories as a unit of analysis, both in a
social science setting and in epidemiological and medical studies. A particular focus of
such research has been the classification of individuals according to life course trajectories,
so to develop typical classes, or groups, of trajectories. This paper contributes to this
line of research by assessing the robustness and consistency of the findings obtained using
two of the most widespread approaches to such problem, latent class analysis (LCA from
now onwards) and sequence analysis (SA from now onwards).

1



The two techniques, LCA and SA, come from different statistical background. Se-
quence Analysis, in its various specifications, is based on algorithmic, or data mining, ap-
proaches aimed at making use of measures of dissimilarity, or distance, between individual
trajectories (see, e.g., Abbott, 1995; Abbott and Tsay, 2000; Billari and Piccarreta, 2005;
Elzinga, 2006; Brzinsky-Fay and Kohler, 2010). The SA approach is fully nonparametric,
and the standard output of the first step of SA analyses is a matrix of dissimilarities. In
the second step, SA-based dissimilarity matrices are then used as inputs in data reduc-
tion techniques, mainly cluster analysis or multidimensional scaling. Groups obtained
via data reduction can be used, in a third step, in subsequent analyses, e.g. on the
determinants or consequences of life course trajectories. Latent Class Analysis, in its var-
ious specifications, is based on a probabilistic modeling approach, with a finite mixture
distribution as the data generating mechanism (see, e.g., Hagenaars and McCutcheon,
2002; Lin et al., 2002; Reboussin et al., 2002; Beath and Heller, 2009; Bruckers et al.,
2010; Pickles and Croudace, 2010). The underlying hypothesis in LCA models is that
individuals belong to a finite number of classes (i.e., the values of a categorical variable)
that cannot be observed. The estimating procedure aims at estimating the probability
of class membership for each trajectory based on observed data via, usually, a likelihood
function. LCA can also be embedded in more complex structural models, where the
determinants and consequences of trajectories are included in the model, or life course
trajectories are seen in parallel with other processes. Estimates are commonly obtained
through an EM algorithm. In terms of classification, LCA also provides the contribution
of every observed variable on the definition of classes.

In the social sciences, the analysis of life course trajectories has been applied to
elicit typical pathways in the transition to adulthood, professional careers, family and
fertility, criminal careers. Using either LCA or SA techniques, individuals are assigned to
homogeneous classes that are interpreted as representing typical behaviors (Aassve et al.,
2007; McVicar and Anyadike-Danes, 2002; Blair-Loy, 1999; Macmillan and Eliason, 2003;
Amato et al., 2008; Nagin and Tremblay, 2005; Roeder et al., 1999; Tremblay et al., 2004;
Groff et al., 2010). The resulting distribution in groups can be used to test a specific
theory or to compare cohorts, subpopulations or the same population across time and/or
space (Billari, 2001; Widmer and Ritschard, 2009). Furthermore, class membership can
be used as an explanatory variable for further analyses (McVicar and Anyadike-Danes,
2002; Mouw, 2005; Billari and Piccarreta, 2005; Amato et al., 2008). Sequence analysis
has also been used in geographical and mobility studies focusing on transitions that occur
not only in time, but also in space. The resulting trajectories represent a set of transitions
that individuals experience across time in different locations in space. For example, a SA
approach has been used to describe the trajectories of tourists choice behavior (Bargeman
et al., 2002; Shoval and Isaacson, 2007), or to classify individuals based on their mobility
and daily-activity patterns (see e.g. Wilson, 2001; Schlich and Axhausen, 2003; Stovel
and Bolan, 2004; Wilson, 2008; Saneinejad and Roorda, 2009; Vanhulsel et al., 2010)

In biostatistics and epidemiology, most applications make use of LCA or related mod-
els. LCA models are used to identify typical patterns in the evolution of health status
during life course and to analyze their determinants (see e.g. Hayford, 2009; Dunn et al.,
2006; Harrison et al., 2009; Bruckers et al., 2010; Croudace et al., 2003). Other studies
focus on the link between health or behavioral trajectories and later outcomes during life
course (Hamil-Luker and O’Rand, 2007; Lajunen et al., 2009; Berge et al., 2010; Savage
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and Birch, 2010; Haviland et al., 2007). Despite SA techniques were first used in genetics
and biostatistics to compare DNA sequences, there are no applications of SA in the study
of the evolution of health trajectories during the life course. This is partially motivated
by the fact that these studies generally focus on the evolution across time of continu-
ous variables, while SA techniques are generally used to describe trajectories of discrete
states. Nevertheless, a large array of medical applications can be described as a sequence
of discrete states. For example, the evolution of BMI across life course can be described
in categories (e.g. underweight, normal weight, overweight or obese status) using suitable
thresholds. Also, SA methods may be used to describe the occurrence and persistence of
particular health status such as hypertension, depression or physical limitations.

For what follows, this paper will particularly focus on the event-based interpretation
of holistic approaches to the analysis of life courses. Within this interpretation, the aim of
holistic methods is to study simultaneously the timing of events in the life course (when
do events happen?, e.g. when do individuals experience their first sexual intercourse or
smoke their first cigarette), their sequencing (in which order do events happen?, e.g. do
individuals have a child prior to marriage or stop smoking before the birth of a child), and
their quantum (how many events happen?, e.g. how many births do they have) (Billari,
2005).

In the remainder of this paper, we compare the performance LCA and SA and test
their consistency. In particular, we focus on the use of LCA and SA as devices to obtain
classes of individual life course trajectories. After a brief introduction and review of
the relevant literature, we compare the consistency of the classification obtained via the
two techniques using an actual dataset on the life course trajectories of young adults.
Then, a simulation approach is adopted to measure the ability of these two methods
to correctly classify groups of life course trajectories when specific forms of “random”
variability are introduced within pre-specified classes in an artificial datasets. In order
to do so, we introduce simulation operators that have a life course and/or observational
meaning. The results obtained contribute on the one hand to outline the usefulness and
robustness of findings based on the classification of life course trajectories through LCA
and SA, on the other hand to illuminate on the potential pitfalls of actual applications
of these techniques.

2 Life course trajectories as categorical time series

Life course trajectories can be described as the observation, over the course of an indi-
vidual’s time (i.e. age), of a number of events (i.e. life events) triggering a change in
a corresponding number of categorical states. The approach used in the analyses can
however, without loss of generality, be extended to states that are measurable on a quan-
titative scale (e.g. systolic blood pressure level, income) over discrete time units. It can
also be used to represent the life course of units other than individuals (e.g., households,
organizations, institutions, . . . ).

The concept of trajectory derives from the interdisciplinary systematization of the life
course paradigm proposed by Elder (1985), in which life course trajectories usually refer
to the joint occurrence of events in multiple life domains. For example, one may want
to have a representation of the evolution of union status, childbearing and work history.
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Trajectories can be analyzed by representing the original data, i.e. each individual’s life
course, as a sequence of states. Each individual i can be associated to a variable sit

indicating her/his life course status at time t. As one can assume that sit takes a finite
number of values, trajectories can be described as categorical time series. In other terms,
trajectories can be represented as strings or sequences of characters, with each character
denoting one particular state. The state-space, (i.e the alphabet from which sequences
are constructed) has a finite number of elements and represent all the possible states that
an individual can take in each time period. For instance, a woman who is single for 12
months since the start of our observation (e.g., age 18), then starts a cohabitation lasting
5 months and then marries and remains married for 7 months can be described as follows:

SSSSSSSSSSSSCCCCCMMMMMMM

In this case, the state-space has 3 values (S=single; M=married; C=cohabiting).
More formally, let us define a discrete-time stochastic process St : t ∈ T with state-

space Σ = {σ1, . . . σK} with realizations sit with i = 1 . . . n. The life course trajectory of
the individual i is described by the sequence si = {si1 . . . siT}.

For practical reasons, a more compact representation of sequences, which we shall
use later on, involves counting the repetitions of a state, which in the former example
becomes as follows:

(S,12)-(C,5)-(M,7)

Life course sequences {si1 . . . siT} can be alternatively represented by a series of vectors
{yit, . . .yiT} where the K categories of sit are represented by M = K−1 binary variables.
This representation is particularly useful in the latent class framework, where the series
of binary observations are included in the model through a logistic link.

We now briefly review the use of Latent Class Analysis and Sequence Analysis in the
study of life course trajectories.

3 Latent Class Analysis of life course trajectories

Latent Class Analysis (LCA) is a statistical technique used (also) to classify individuals
based on a set of categorical outcomes (Lazarsfeld and Henry, 1968; Goodman, 1974;
McCutcheon, 1987; Clogg, 1995; Hagenaars and McCutcheon, 2002). The underlying
assumption of LCA is that individuals belong to classes that are unobserved (latent),
but for which observed data provide adequate information on class membership through
a likelihood function. When data are collected longitudinally, the use of LCA is usually
defined “latent trajectory modeling” or “longitudinal latent class analysis” (Vermunt,
2008b; Beath and Heller, 2009; Collins and Wugalter, 1992).

In the LCA framework, it is convenient to represent the life course trajectory as a
series of binary vectors indicating the simultaneous occurrence of states in different life
domains. Let us assume that there are i subject, j = 1, . . . ,M life domains, c = 1, . . . , C
classes and t = 1, . . . , T periods. The conditional likelihood for each subject is:
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P (yi11., . . . , yiMT |ci = c) =
T∏

t=1

M∏
j=1

πyijt
cjt (1− πcjt)

1−yijt ,

where πcjt is the probability of jth outcome =1 at time t for class c, constrained to
be between zero and one by transformation through, for example, the logistic scale.
Summing over the classes, weighted by ηc, one obtains the marginal likelihood:

P (yi11, . . . , yiMT ) =
C∑

c=1

ηcP (yi11, . . . , yiMT |ci = c)

LCA assumes that the structure of correlation between observed variables is com-
pletely explained by latent factors. This condition is called “conditional indipendence”,
that is P (yi11., . . . , yiMT |ci = c) ⊥⊥ P (yi11., . . . , yiMT |ci = d) with d 6= c (Espeland and
Handelman, 1989; Hagenaars, 1988; Uebersax, 1999). The longitudinal structure of the
model can be represented by figure 1.

Figure 1: Latent class structure for longitudinal data, (Beath and Heller, 2009)

The principal drawback of using standard LCA for longitudinal data is that these
models do not take in consideration the time correlation between variables. The same
variable measured in different time periods is, in fact, considered independent. In the
recent years, various forms of correction have been proposed to adjust for temporal cor-
relation between observations, mainly including a random effect in the model (Vermunt,
2008a; Beath and Heller, 2009; Hadgu and Qu, 1998; Vermunt, 2003). In later analyses,
we refer to the more standard version of LCA applied to longitudinal data.

4 Sequence analysis and Optimal Matching

Sequence analysis is a family of algorithm based techniques used to quantify distances
between categorical time series. Optimal Matching algorithm (OM) is the most known
technique that has been applied to social science. The development of OM started in the
seventies and the technique has been described in details by Kruskal (1983). Basically,
OM expresses distances between sequences in terms of the minimal amount of effort,
measured in terms of edit operations, that is required to change two sequences such that
they become identical. A set that is composed of three basic operations to transform
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sequences is used: Ω = {i, δ, σ}, where i denotes insertion (one state is inserted into the
sequence), δ denotes deletion (one state is deleted from the sequence) and σ denotes sub-
stitution (one state is replaced by another state). To each of these elementary operations
ωk ∈ Ω, a specific cost can be assigned, c(ωk). If K basic operations must be performed
to transform one sequence into another the transformation cost can be computed as
c(ω1, . . . ωK) =

∑K
k=1 c(ωk).

A specific cost can be assigned to each operation, and the total cost of applying a
series of edit operations can be computed as the sum of the costs of single operations. The
distance between two sequences can thus be defined as the minimum cost of transforming
one sequence into the other one. Hence, the resulting output is a symmetric matrix of
pairwise distances that can be used for further statistical analysis, mainly multivariate
analysis. Optimal Matching is a family of dissimilarity measures derived from the measure
originally proposed in the field of information theory and computer science by Vladimir
Levenshtein (Levenshtein, 1965). Abbott (1995) adapted OM to social science assigning
to three elementary operations different costs, based on the social differences between
states (Lesnard, 2006). The choice of the operations’ costs determines the matching
procedure and influences the results obtained. This is a major concern about the use
of this technique in social sciences (Wu, 2000). A common solution for assessing the
substitution costs is to use the inverse of the transition probability, in order to assign
higher costs to the less common transitions (Piccarreta and Billari, 2007).

4.1 Sequence-based alternatives to Optimal Matching Algorithm

The use of OMA in the analysis of life course trajectories has often been criticized. (for
a recent review see Brzinsky-Fay and Kohler, 2010; Aisenbrey and Fasang, 2010).

First, it is difficult to attribute a sociological meaning to the sequence operations
(Lesnard, 2006). In biology the three edit operations used in OM are of little theoretical
relevance since there is no resemblance with bio-chemical processes. However, differently
from biological sequences, social sequences are time referenced. Therefore, the edit oper-
ations in social sequences imply modifications in the time scale. In particular, insertion
and deletion operations warp time in order to match identically coded states but occur-
ring at different moments in their respective sequences. On the other hand, substituting
two events conserve the original time scale of events without warping time. A simple so-
lution to avoid indel operations is to use the Hamming distance (Hamming, 1950). The
Hamming distance measures the minimum number of substitutions required to change
one string into the other.

Second, the choice of costs is a major concern on the use of OM for social sciences
because their arbitrariness and the weak link to theory. Critics argue that the resulting
distances are meaningless from a sociological point of view (Levine, 2000). In the case
in which there is no a clear ranking between the different states, the definition of cost
is necessarily arbitrary. A common practice is to set constant costs independent to the
states that are substituted. This is equal to set c(i) = c(δ) and c(σ) = 2c(δ). Using
this approach, c(i) is a scaling factor, and the dissimilarity between two sequences is
proportional to the (minimum) number of operations that are needed to transform one
into another, with double weight given to substitution. The reason for setting c(σ) = 2c(δ)
is that, in a constant cost framework, substitution is equivalent to a deletion followed
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by an insertion. Alternatively, it is possible to adopt a data-driven approach, i.e. using
substitution costs that are inversely proportional to transition frequencies (Piccarreta
and Billari, 2007). Consider two states, a and b. Let Nt(a) and Nt(b) be the number of
individuals experiencing respectively a and b at time t, and Nt,t+1(a, b) be the number of
individuals experiencing a at time t and b at time t + 1. The transition frequency from
a to b is

pt,t+1(a, b) =

∑T−1
t=1 Nt,t+1(a, b)∑T−1

t=1 Nt(a)
(1)

The cost of substituting a for b is c(σ; a, b) = c(σ; b, a) = 2 − pt,t+1(a, b) − pt,t+1(b, a)
if a 6= b. This cost specification takes into account the occurrence of the events weight-
ing more those transitions that are less frequent. A possible critic is that transitions
at different age are qualitatively different. For this reason, Lesnard (2006) proposes a
modification of the Hamming distance using dynamic costs. The “Dynamic Hamming
Distance” (DHD) is based on time-varying substitution costs ct(σ; a, b).

Third, it is not clear how to treat missing data and censoring among sequences. In
fact, unequal sequence length due to censoring should not contribute to distance between
sequences. A common practice is to restrict the analysis to sequences of the same length
in order to avoid distortions due to comparing sequences of different length. Elzinga
(2006) proposes different measures for categorical time series that are valid for sequences
of different length and do not require cost specification. The basic idea is to compare the
number of common subsequences of two sequences in order to asses a similarity measures.
A subsequence is a sequence that can be derived from another sequence by deleting some
elements without changing the order of the remaining elements. For example, ABD
is a subsequence of ABCDE. Remarkable subsequences are the prefix and the suffix
of a sequence, that are, respectively, the first (last) k elements of a sequence. Elzinga
(2006) reviews in details different distance measures based on subsequences. The basic
idea is that two sequences are very similar if they have in common long subsequences.
In this way, the length of common subsequences can be used as an indicator of the
similarity of two strings. Suitable measures based subsequences are: the longest common
subsequence (LCS); the longest common prefix (LCP) and the longest common suffix
(RLCP). The theoretical basis of these measures come from information science and
their great advantage is that the researcher does not need to specify any operation costs.

Other solutions that have been proposed rely on OM with some modifications. For
example, Hollister (2009) and Gauthier et al. (2009) analyze different cost specification,
while Halpin (2010) proposes a modified version of the algorithm where OMs elementary
operations are weighted inversely with episode length.

5 The consistency of LCA and SA: an example using

real life course data

One of the main challenges of studying the life course is the complexity of life course
data (Giele and Elder, 1998). It is a common practice in life course analysis to identify
sensible periods of the life course using a set of different markers coming from different
life domains. For instance, transition to adulthood can be described with five life course
transitions: finishing school, beginning full-time employment, entering a non-marital
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cohabitation, becoming a parent, and getting married. The fact that these transitions
can occur in different orders and at different ages yields to an enormous number of
possible combinations. To study the diverse experiences of transition to adulthood, it
is necessary to reduce the number of pathways to a manageable number. Amato et al.
(2008) propose to use latent class analysis to create family formation pathways for women
between the age of 18 and 23. Input variables include cohabitation, marriage, parenthood,
full-time employment, and school attainment. Data (n = 2, 290) come from Waves I
and III of the National Longitudinal Study of Adolescent Health (Add Health). The
analysis revealed seven latent pathways: college- no family formation (29%), high school–
no family formation (19%), cohabitation without children (15%), married mothers (14%),
single mothers (10%), cohabiting mothers (8%), and inactive (6%). Figure 2 shows the
estimates of a latent class model.

Would a sequence analysis lead to the same results? The first possible test is to run
a sequence analysis with the same data and compare the groups obtained by the two
methods. Family formation trajectories can be described by the joint occurrence of the
five variables described above. The resulting sequence is 6 period long and the state-space
is composed 25 = 32 elements resulting from the combination of the possible states. It
follows that the number of possible sequences is 326. To compare the LCA solution with
sequence analysis, we calculated the dissimilarity matrix using different distances: OM
with transition costs; Longest Common Subsequence (LCS); OM with constant costs;
Dynamic Hamming Distance (DHD); Longest Common Prefix (LCP); Longest Common
Suffix (RLCP); Hamming distance. Starting from each of these dissimilarity matrices,
a cluster analysis is conducted using the Ward algorithm. Then we derive a measure of
agreement in classification between the LCA solution and the cluster solutions derived
by the SA approaches. The agreement in classification is measured with the Rand index
(Rand, 1971) that measures the proportion of couples of observations classified in the
same group by two cluster solutions. The corrected version of Rand Index (Morey and
Agresti, 1984) accounts for the agreement due to chance. Results are presented in table 1.
A detailed description of the clustering method and the classification index is presented
in section 6.3.

Table 1: Agreement in classification between LCA and SA techniques
Rand index Corrected Rand index

OM with empirical costs 0.88 0.59
Longest common subsequence (LCS) 0.87 0.55
OM with constant costs 0.86 0.52
Dynamic Hamming distance (DHD) 0.86 0.50
Longest Common Prefix (LCP) 0.77 0.26
Longest Common Suffix (RLCP) 0.71 0.19
Hamming distance 0.71 0.19

In this example, Optimal Matching with empirical-derived costs gives the closest
solution to the classes identified by LCA. The rand index is 0.88 meaning that among all
the possible pairs of observations, almost the 90% are classified in the same group using
the two methods. The corrected version of the Rand index accounts for the proportion of
agreement due to chance and reduces the percentage of couples classified in agreement to
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Figure 2: Latent class representation of early family formation. Women 18-23 years old.
Add-health, (Amato et al., 2008)
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59%. The LCS distance does not imply any cost settings. The cluster solution obtained
with this method is very similar to the OM solution (0.87 Rand index, 0.55 the corrected
version). Using constant costs does not substantially decrease the agreement with respect
to the OM version with empirical costs. Also the use of dynamic costs based on the
age of the respondent does not change the percentage of agreement between the two
classification. On the other hand, the cluster solutions obtained with the remaining
distances (LCP; RLCP and Hamming distance) diverges substantially from the LCA
solution presented in the paper by Amato et al. (2008).

This example does not motivate the use of a particular distance respect to the others,
but gives a first indication on the consistence of different statistical methods for life course
analysis. In particular it is interesting to notice that, in this case, the two methods that
lead to a closer solution to LCA are OM with transition costs and LCS. In the simulations
presented in this paper, we compare LCA with these two methods for sequence analysis.
Although the different approaches for life course classification seem to be consistent (in
particular between LCA and OM), it is not possible to draw any conclusion on the
reliability of the methods if the generating mechanism of life course sequences is unknown.

6 A simulation study

We propose a simulation approach to study the factors affecting the goodness of LCA
and SA techniques. The simulation procedure can be summarized in 4 steps:

1. Define typical groups of life course trajectories

2. Introduce variability in timing, quantum and sequencing

3. Classify individuals of the artificial dataset using Latent Class and Optimal Match-
ing techniques

4. Compare classification obtained with the two techniques with the real groups

A simulation approach to test the reliability of SA techniques has been previously pro-
posed by Wilson (2006) to test the performances of the ClustalG multiple alignment
package. The simulation study proposed in this paper, however, follows a different ap-
proach. Instead of starting from a stochastic generating mechanism, the reliability of SA
techniques is tested increasing the level of heterogeneity among groups of sequences.

6.1 Defining typical groups of life course trajectories

Let us define 4 different groups of life course trajectories using a simple state-space
composed by the states S,C,M. For each sequence, we set the length equal to 30 and S
as initial state. Then, we repeat every typical sequence 250 times obtaining an artificial
dataset of 1000 observations. The dataset can be considered as a monthly (quarterly)
collection of data indicating the marital/union status of an individual. One, for example,
can consider S as single, C as cohabiting and M as married. Let us define 4 “typical”
groups of sequences:

1. (S,10)-(C,10)-(M,10)
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2. (S,20)-(C,5)-(M,5)

3. (S,10)-(C,5)-(M,10)-(C,5)

4. (S,20)-(M,10)

Where (X, t) indicates t periods in state X. Individuals from group 1 are single for 10
periods than they cohabit for 10 periods and then they stay in marriage until the end of
the sequence. Groups differ for timing, quantum and order. For example, group 1 differs
from group 2 because individuals exit state S earlier, from group 3 because of the order
of states M and C and from group 4 because they experiences state C.

6.2 Introducing variability in the typical sequences

To test the reliability of the two methods, we introduce random perturbations in tim-
ing, quantum and sequencing of trajectories. The idea is to confound the latent groups
modifying sequences with different sources of noise. Thus, we introduce a series of se-
quence operators that modify life trajectories. These operations introduce variability in
the groups. Even if these operations have not a specific meaning in the social sciences,
we tried to mimic some behaviors observed by individuals during the life course.

Let us define the following operators:

• Postponement
With probability p (postponement rate), copy status from time t to time t+ 1
S S S S S S S S S S C C C C C C C C C C MM M M M M M M M M
S S S S S S S S S S S C C C C C C C C C C M M M M M M M M M

• Slicing
With probability p (slicing rate), exchange two subsequence of the same length
S S S S S S S S S S C C C C C C C C C C MMMMM M M M M M
S S S S S S S S S S C MMMMC C C C C C C C C M M M M M M

• Inversion
With probability p (inversion rate), exchange all the elements C with elements M
S S S S S S S S S S C C C C C C C C C C M M M M M M M M M M
S S S S S S S S S S MMMMMMMMMMC C C C C C C C C C

• Mutation
With probability p (mutation rate), substitute sequences status at time t with a
random element of the alphabet.
S S S S S S S S S S C C C C C C C C C C MM M MMM M M M M
S S S S MS S S S S S C C C C C C C C C C M M MC M M M M M

• Truncation
With probability p cut sequence at time t, with t randomly chosen.
S S S S S S S S S S C C C C C C C C C C M M M MMM M M M M
S S S S M S S S S S S C C C C C C C C C C M M M
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Figure 3: Effects of different sequence operators

The operators proposed are meant to introduce variations in the different components
of life course introducing variability among sequences. The general idea is to modify the
sequences mimicking the behavior of real life course trajectories. For example, some
individuals may postpone (or anticipate) a transition, while others invert the “order” in
which events happen. Mutation does not have a direct life course interpretation, but it
can be described as a source of measurement error, since it may occur that individuals
are randomly misclassified across time. Using this disturbance strategy allows to test the
reliability of different methods without assuming any generating mechanism of the data.

6.2.1 How to measure variability in Timing, Quantum and Sequencing

• Timing The tempo dimension of a transition is the timing in which a change of
state occurs. The exit time from the first time is a crucial transition in many
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demographic studies (i.e. leaving parental home, entering the first union, having
the first child). As a naive indicator of timing, we define the age at first transition.
The standardized indicator τ expresses the proportion of a life sequence spent in
the initial status. Precocious individuals have a low value of τ , on the contrary τ
increases with postponement.

tmin = min{s(t−1) 6= st} t = 1, . . . , T

τ = tmin/T

• Quantum. The number of events is a key element that characterizes a life course
trajectory. The concept of Quantum indicates the likelihood of an individual to
experience transitions. A simple indicator can be expressed by the overall number
of transitions. The standardized value ρ indicates the number of transitions per
time period.

ρ =
#{s(t−1) 6= st}

T

• Sequencing The order in which events occur is crucial in the study of life course.
For example, it may be relevant to study the divergence of a life trajectory from
the normative course of transition. For this reason, we propose as an indicator,
the number of non-normative transition. That is, the transitions that diverge from
a given sequence of events considered normative in the society. The standardized
value ς indicates the proportion of normative transitions over the total number of
transition.

ς =
Number of normative transitions

Total number of transitions

The three indicators range between 0 and 1.
These operators modify different dimension of life courses. Postponement introduces

a major change in timing while the other two dimensions remain unaltered. Inversion
modifies only the order of events because it transforms an entire category of events into
another. Slicing modifies both the order and the quantum of events. Last, mutation has
a massive effect on quantum, but it affects also the other two dimensions introducing
completely random variations. The effect of the sequence operators are illustrated in
figure 4.

6.3 Classification

Once defined a new dataset, modified by the previous “sequence operators”, it is possible
to apply the alternative classification procedures. While LCA requires less specifications
by the researcher, in sequence analysis one need to specify the costs (only in case of
OM) and the clustering procedure. Following the most common approach in SA for
demographic studies, we estimate OM distances using costs proportional to transition
rates and we use standard Ward algorithm for clustering. Ward clustering algorithm
(Ward, 1963) can be briefly described as it follows. Consider N individuals to be clustered
according to their sequences. Let d(i, j) denote the distance between the ith and the jth

13



Figure 4: Effects in timing, quantum and sequencing. Mutation, Postponement

Figure 5: Effects in timing, quantum and sequencing. Inversion, Slicing
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individual sequences. The total dispersion, i.e. the amount of dispersion within the whole
data set, is usually measured as T =

∑
i,j d(i, j). Suppose now that the whole sample is

partitioned into G clusters. The dispersion within the gth cluster is Wg =
∑

i,j∈g d(i, j),

and the dispersion within the G groups can be summarized as WG =
∑G

g=1Wg. The

adequacy of a clustering solution is often evaluated by referring to R2
G = 1 − WG/T ,

which is the proportion of the total dispersion accounted for by the G clusters. By
construction, if G − 1 clusters are obtained by joining two clusters, say gL and gR, out
of a number of G, into a single one g, it follows that WG < WG−1, and R2

G > R2
G−1.

Hierarchical agglomerative clustering algorithms proceed by sequentially joining pairs of
clusters: they differ in the criterion that is followed to select which clusters must be
joined. In Wards algorithm the two clusters to be joined are selected by minimizing the
increase in the within-groups dispersion consequent on the reduction of the partitions
degree:

∆(g|gL, gR) = Wg −WgL −WgR = WG−1 −WG (2)

or, equivalently, by minimizing ∆R2
G−1 = R2

G − R2
G−1. The result of this hierarchical

procedure is a sequence of (nested) clusters solutions having a decreasing number of
clusters, {Pmax, Pmax−1, ..., P1}, max being the maximum number of clusters that we
can define, coinciding with N , the total number of cases. Given a partition PG, the
PG−1 partition is determined by (conditionally) maximizing R2

G−1, i.e. by minimizing the
decrease in the R2 due to the reduction of the number of clusters.

Latent Class has been conducted setting binary variables in each time period indicat-
ing if the individual is single (S), cohabiting (C) and married (M). To avoid local maxima
we run the model 3 times and we choose the model with the minimum BIC. For practical
purposes, both the number of classes and the number of clusters is set fixed. The analy-
ses conducted varying the number of classes give similar results in terms of classification
performances.

6.4 Classification performances

The goodness of classification is measured examining the association rate between the
classes obtained by the two methods and the original groups. we measure how the
association between the real and the actual groups changes according to different levels
of disturbance. Association rate is measured with a modified version of Rand index
(Rand, 1971). Rand index measures the proportion of couples of observations that are
classified in the same group by two (or more) judges. Suppose that in the population
of interest, there are k1 clusters in the first solution and k2 clusters in the second. Let
Pij be the probability that a randomly selected individual is classified in cluster i in the
first solution and cluster j in the second solution. Rand’s statistic is defined to be the
probability that a randomly selected pair is classified in agreement. This probability
equals

Ps =
∑ ∑

P 2
ij +

∑ ∑
Pij(1− Pi+ − P+j + Pij) (3)

= 1−
∑
P 2

i+ −
∑
P 2

+j + 2
∑ ∑

P 2
ij (4)

This measure of agreement has the advantage that can be used even if the size of the two
clusters (k1 and k2) differ. On the other hand, Rand index makes no correction for chance
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agreement. Therefore, it is not possible to tell whether a specific value of Ps is “large” or
“small”, because its value when individuals are classified at random (i.e. Pij = Pi+P+j)
is not zero, and depends on Pi+ and Pj+. This can constitute a disadvantage when the
replicability of different classifications are being compared. In this paper, we use the
corrected version of the Rand Index (Morey and Agresti, 1984) that properly takes into
account the proportion of agreement due to chance. The corrected version of Rand’s
statistic equals

Ω =
2
∑ ∑

P 2
ij − 2(

∑
P 2

i+)(
∑
P 2

+j)∑
P 2

i+ +
∑
P 2

+j − 2(
∑
P 2

i+)(
∑
P 2

+j)
. (5)

This statistic equals one for perfect agreement, Ω = 0 for chance agreement, and Ω < 0
when agreement is less than expected by chance.

7 Simulation results

We simulated 1000 samples for each sequence operator applying different level of distur-
bance. For each sample, we estimate a latent class model with 4 classes and we calculated
OM and LCS matrix of dissimilarity. Then we apply a cluster analysis using Ward al-
gorithm to classify individuals in 4 groups. The groups obtained are compared with the
original groups using the corrected Rand index. Figure 6 and table 3 report the average
rate of agreement between the original groups and the results obtained by latent class
analysis and sequence analysis (OM and LCS). Results show that classification is sensitive
to the transformations inducted by sequence operators. With the increasing of variability
in the sample, the classification goodness decreases. As expected, the performances of all
the methods decrease rapidly with random mutation. Mutation, in fact, can be consid-
ered a benchmark since it introduces the maximum amount of variation. The agreement
rate under postponement decreases more slowly. In particular small postponement rates
do not seem to affect the probability of good classification. However, precision decreases
with higher disturbance levels. Postponement principally affects timing, since it extends
the amount of time spent in the initial status. But a massive postponement has also an ef-
fect in quantum, since it reduces the amount of transitions in trajectories and reduces the
variability between different groups of sequences. Inversion has the maximum confound-
ing effect at rate 0.5. At that point, exactly half of sequences get all “C” inverted with
“M” and vice-versa. With greater inversion rates, the order of sequences changes and,
in turn, variability within groups is reduced. Therefore, classification becomes straight-
forward. Slicing has an effect both on sequencing and quantum of life course and the
classification decreases almost linearly. The performances of classification under trun-
cation follow a U-shape. An increase in truncation rate affects the number of censored
individual sequences. It follows that high truncation rates are associated with sequences
that are shorter in average. For this reason (since truncation is randomly assigned to the
second half of the sequence), we observe an increase in classification agreement when the
truncation rate is high.

The results obtained by our simulations suggest some considerations about the re-
liability of these classification methods. First, there are no evidence of a methodology
that have superior performances under all the sources of variation. In fact we do not
observe a methodology that perform better in all the cases. Despite that, according to
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our simulations, LCA has better performances under mutation and truncation. On the
other hand, SA shows greater agreement in inversion and slicing. Results from postpone-
ment indicate a substantial equivalence of the techniques with slightly better results for
sequence analyses. Second, the classifications with latent class analysis seem to be less
precise. Using simulated data it is possible to have an indication on the variability of
the estimated agreement rates. Under all the sources of error, the results obtained with
LCA exhibit more variability. Third, the differences between OM and LCS are minimal.
Both the methods, in fact, produce very similar results. Although the two distances
are qualitatively different, the results obtained in all the sources of variability are very
similar.

To summarize the results we propose a measure of the overall performance. Let R be
the number of simulations, and Ω

{LCA;OM ;LCS}
r the corrected Rand index for the sample r

under different sequence operators. A simple index of the overall goodness of classification
is the expected Rand index Ω̄.

Ω̄ =
1

R

R∑
r=1

Ωi (6)

Ω̄ can be interpreted as the expected agreement between the true groups and the esti-
mated classification. Table 2 summarizes the results. Sequence analysis techniques seem
to have better performances under postponement, inversion and slicing. Latent class
analysis gives better results under mutation and in case of data truncation.

Table 2: Classification rate

Mutation Postponement Inversion Slicing Truncation

LCA 0.586 0.713 0.566 0.427 0.608
OM 0.520 0.735 0.638 0.632 0.549
LCS 0.509 0.737 0.647 0.646 0.552
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Figure 6: Classification results
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8 Discussion

In the last decade, holistic methods for life course analysis have become more and more
common. Instead of focusing only on life course transitions, the object of the study is
the entire life trajectory. Life course trajectories can be described as categorical time
series where time is associated to life states. Using longitudinal or retrospective data,
it is, in fact, possible to describe individuals’ life courses as age-referenced sequences of
events. Rather than modeling directly the probability of the occurrence of a particular
event, holistic methods attempt to individuate important patterns in the data using a
data mining approach. In the literature of life course analysis we can distinguish two
principal approaches: latent class analysis and sequence analysis.

It is not clear, however, how reliable are these methods in detecting effectively pat-
terns in the data. A bigger critic that have been moved to these techniques is exactly
their reliability and the difficulties in testing it. For this reason, we propose a simulation
approach to investigate the reliability of classification techniques in life course analysis.
Furthermore, we propose a method to simulate life sequencing without making any as-
sumptions on the generating mechanism of the data. Starting from homogeneous groups
of life trajectories, we introduce different sources of variability that, mimicking individu-
als’ behavior, transform life courses in different dimensions. This approach allows to test
if there are substantial differences in detecting groups of life trajectories.

Our simulation results show that the two methods are consistent. Although we do
not found the absolute superiority of a method respect to the other, our results show
that OM and LCS seem to have better performances when life course sequences are mod-
ified in the ordering of transitions (inversion and slicing). On the other hand, LCA has
better results when the variations are completely random (mutation). Although random
mutation may be common in some scientific fields, i.e. biology or information theory, a
random disturbance appears to be quite unlikely in life course analysis. Individuals may
experience unexpected events in life course, but usually these events are associated with
a duration and rarely have no effect on the following part of the life trajectory. Never-
theless, mutation can be interpreted as a measurement error, since individuals may be
misclassified during repeated measurements.

Overall, the results obtained in this paper justify the use of sequence analysis (in
particular OM and LCS) for the study of life course. Our sequence operators do not
cover all the possible variation that can occur in life course. That otherwise would be
impossible. Also, life course classification may be influenced by other factors (i.e. the
length of sequences, the dimension of the state-space and the classification algorithm).
Despite that, this study presents some limitations, it represents one of the first attempt
to test the reliability of holistic methods for life course analysis.
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