A single year age adjustment from a preliminary grouped data

Barun Kumar Mukhopadhyay

Population Studies Unit Indian Statistical Institute 203, B.T. Road Kolkata – 700 108

A single year age adjustment from a preliminary grouped data

By

Barun Kumar Mukhopadhyay*

Abstract

Adjustments to raw age data in censuses of developing countries are essential because of huge amount of errors. There are some methods especially in United Nations. And individual country has also her own methods. However, the present work is based on only the 5-year grouped data which are usually available in the websites just a few months after the census is over. The official adjusted data are available after long time gap. Hence as an alternative, the present paper tries to use those preliminary data to get an adjusted single year age data for the researchers. The paper follows a number of steps starting right from cumulation of the data once in a more than type and other in a less than type, so that the distribution approaches toward a smoothed series. But the final adjustment is done by fitting two 3rd degree polynomials taking cumulated male and female populations. The adjusted data are found consistent and follows the usual pattern of correct age distribution.

 $^{^*} Associate \ \ Scientist \ \ `B' \ retired \ from \ Population \ Studies \ Unit, \ ISI, \ Kolkata, \ India, e-mail: barun_mukhopadhyay@yahoo.com$

Adjustment to single year data on age: A new approach

By

Barun Kumar Mukhopadhyay*

Introduction

Adjustment to age distribution either it is single year or grouped one is very essential because of many type of errors found in censuses of many countries particularly in developing zones. The corrected age distribution is quite useful in many studies of population research, in particular, even in other branches of social sciences, physical sciences etc. Sometimes Market researchers require an age distribution for their product to be sold properly as this item affects their selling on the basis of ages of the consumer etc. An age distribution that is smooth and as close to correct as possible is still useful, particularly as a basis for population projection (UN, 1983).

Before adjustment to be done, one has to know about what kind of major errors creep in. Digit preference errors are the most common type of errors especially found in the middle age ranges. It is also common that very young populations are under enumerated and advanced aged persons try to exaggerate their ages. In this connection it may be pointed out that adjustment to 0-4 population was sometimes adjusted separately because of under enumeration type of error for which different adjustment procedures are adopted (UN methods in different manuals and Mukhopadhyay (1986) and others. Similarly for advanced aged persons. Now, the present paper tries to adjust age distribution particularly up to fifty nine years of age, but it may be done for some more higher ages such as up to sixty nine, even more as the availability of raw data. Digit preference error is the tendency of persons reporting their ages ending in some preferred digits. There are some other kinds of errors such as shifting errors, recall lapse error (Som, 1973) etc.

Methodology and results

At the outset, it is important to say that usually after the census is over for some months a few preliminary tables are available in the website. As regard ages, only a five-year grouped data become available. As has already been pointed out earlier these data directly are not worth usable. Adjusted data are very essential for which the present paper gives some methodology which will require only the raw data and a single assumption. Rest of the methodologies follow some general procedures. This kind of work may help researchers to use the adjusted data for their related activities or they can themselves do the adjustments in a time bound research projects since raw and adjusted single year age data are available from the census authority after completion of number of years to put in the websites, CDs or census volumes.

^{*} Associate Scientist 'B' retired from Population Studies Unit, ISI, Kolkata, India, e-mail:barun_mukhopadhyay@yahoo.com

Smoothing and adjustment procedures are usually applied to cumulated age distribution that is, to the number of persons or proportion of persons under given ages, that is, less than type since the process of cumulation removes the effects of errors that do not result in a net transfer of people across each of the age boundaries used (UN, 1983). In the present methods, 2001 census of Indian data are used for experimentation. Now the raw 5-year grouped data as the only input required by two sexes are given below:

Table 1 : 5-year grouped distribution of ages by two sexes Census, India, 2001

Census, maia, 2001							
age	male	female	Total				
0-4	57119612	53327552	110447164				
5-9	66734833	61581957	128316790				
10-14	65632877	59213981	124846858				
15-19	53939991	46275899	100215890				
20-24	46321150	43442982	89764132				
25-29	41557546	41864847	83422393				
30-34	37361916	36912128	74274044				
35-39	36038727	34535358	70574085				
40-44	29878715	25859582	55738297				
45-49	24867886	22541090	47408976				
50-54	19851608	16735951	36587559				
55-59	13583022	14070325	27653347				
60+	37768327	24265284	62033611				
ANS	1500562	1237910	2738472				
Grand total	532156772	496453556	1028610328				

Sources: website of census of India, 2001

The above distribution clearly points out some significant inconsistencies. The population aged 0-4 is under enumerated for both the sexes. Apart from this, there are some fluctuation of the data, e.g., the population aged 55-59 are always lower than the adjacent higher age group of 60-64. Moreover, there are a wide ga4p between the figures of male and female populations in the advanced age group of 60 + years. These are some kind of irregularities in the data. The following gives the more than type cumulated distribution as a first step.

Table 2: Cumulated census population by 5-year group, India, 2001

Age+	Male+	Female+	M(EXP(ln(Pt/Po))	F(EXP(ln(Pt/Po))
0+	530656210	495215646	0.977480404	0.977470341
5+	473536598	441888094	0.970076214	0.970429984
10+	406801765	380306137	0.965422282	0.966716814
15+	341168888	321092156	0.966165982	0.969354308
20+	287228897	274816257	0.965438307	0.966171349
25+	240907747	231373275	0.962837912	0.960866533
30+	199350201	189508428	0.959341840	0.957597701
35+	161988285	152596300	0.950916992	0.949975595
40+	125949558	118060942	0.947281358	0.951757300
45+	96070843	92201360	0.941849010	0.945473945
50+	71202957	69660270	0.936722097	0.946529219
55+	51351349	52924319	0.940405538	0.940061092
60+	37768327	38853994	0. 914687664	0.915029063

After getting the different cumulated ages such as 0+, 5+, 10+ 60+, the next step is to find the growth rates among these different categories of cumulated figures assuming an exponential in each consecutive ages:

$$P_t = P_0 e^{-rt}$$

The negative growth is obvious as the population will decline due to mortality in a closed population (another very common assumption). Now the step 3 requires to generate another cumulated distribution on single year basis such as 0+, 1+, 2+, 60+. The last two columns of the above table are directly prepared using the already constructed different growth rates (negative) which are skipped and exponentials are accordingly done with one year time period in each ages like 0+, 5+, and so on up to 60+. The following table gives the cumulated (more than type) figures 0+, 1+, 2+, 60+ for male and female populations separately.

Table 3 : Cumulated figures in each individual ages, 0+, 1+, 2+, 60+, India, 2001

Single			Single			Single		
Age+	MALE	FEMALE	Age+	MALE	FEMALE	Age+	MALE	FEMALE
0+	530656210	495215646	20+	287228897	265519594	40+	125949558	112365363
1+	518706047	484058606	21+	277301780	256537424	41+	119309668	106944555
2+	507024996	473152931	22+	267717761	247859109	42+	113019825	101785261
3+	495606998	462492957	23+	258464982	239474370	43+	107061573	96874865
4+	484446129	452073148	24+	249531995	231373275	44+	101417432	92201360
5+	473536598	441888094	25+	240907747	223546229	45+	96070843	87173984
6+	459366590	428821456	26+	231955112	222318837	46+	90484228	82420730
7+	445620602	416141199	27+	223335176	213618730	47+	85222481	77926653
8+	432285947	403835897	28+	215035574	205259088	48+	80266709	73677620
9+	419350314	391894463	29+	207044403	197226588	49+	75599121	69660270
10+	406801765	380306137	30+	199350201	189508428	50+	71202957	65935481
11+	392735488	367648337	31+	191244989	181472835	51+	66697383	62409859
12+	379155592	355411829	32+	183469319	173777970	52+	62476913	59072755
13+	366327234	343582592	33+	176009794	166409384	53+	58523505	55914089
14+	353666345	332147068	34+	168853560	159353244	54+	54820260	52924319
15+	340523365	311252065	35+	161988285	152596300	55+	51351349	49752093
16+	329625774	301713530	36+	154037413	144962761	56+	48291093	46770007
17+	318473209	292467310	37+	146476793	137711085	57+	45413211	43966664
18+	307697981	283504447	38+	139287272	130822170	58+	42706835	41331350
19+	297287322	274816257	39+	132450633	124277868	59+	40161745	38853994

Here it must be mentioned that population for ages 0+ is obviously the total population. The age not stated (ANS) figures of 1500562 for male and 1237910 for female have been subtracted from the corresponding total figures for male and female although in some instances they are pro rated to the original pattern of age distribution.

The adjusted single year data then are obtained by subtracting one step lower single year cumulated figure from one step higher figure and accordingly the entire distribution is formed and given below:

Table 4: Estimated single year age distribution, Indian census, 2001

AGE	MALE	FEMALE	AGE	MALE	FEMALE	AGE	MALE	FEMALE
0	11950163	11157040	20	9927117	8982170	40	6639890	5420809
1	11681050	10905675	21	9584019	8678315	41	6289844	5159294
2	11417998	10659974	22	9252779	8384739	42	5958252	4910396
3	11160869	10419809	23	8932987	8101095	43	5644141	4673505
4	10909531	10185054	24	8624248	7827046	44	5346589	5027376
5	14170008	13066638	25	8952635	1227393	45	5586615	4753253
6	13745988	12680257	26	8619936	8700107	46	5261747	4494077
7	13334656	12305302	27	8299601	8359642	47	4955772	4249033
8	12935632	11941434	28	7991171	8032500	48	4667589	4017350
9	12548549	11588326	29	7694202	7718160	49	4396164	3724789
10	14066277	12657800	30	8105212	8035593	50	4505574	3525622
11	13579897	12236508	31	7775669	7694865	51	4220471	3337104
12	12828357	11829238	32	7459525	7368585	52	3953408	3158666
13	12660889	11435523	33	7156234	7056140	53	3703245	2989770
14	13142980	20895004	34	6865275	6756944	54	3468911	3172226
15	10897592	9538535	35	7950872	7633539	55	3060256	2982086
16	11152564	9246220	36	7560620	7251676	56	2877882	2803343
17	10775228	8962863	37	7189522	6888915	57	2706376	2635314
18	10410659	8688190	38	6836638	6544301	58	2545091	2477356
19	10058425	9296663	39	6501075	11912505	59	2393418	3301460

After adjustment, the distribution of single year ages in Table 4 still show some irregularities particularly in some round digits like, 0s and 5s where higher values indicating preferences etc. In order to smooth the irregular series, cumulated (less than type) distributions have been prepared in step 4 in the following table. In Table 5, ten year groups like up to 9, up to 19, so on lastly up to 59 have been considered taking into account all the ten digits as Zelnik (1961) used the same technique while doing ten year moving average method as a part of his method.

Table 5: Cumulated distribution, 2001

Up to Age	Male	Female		
9	123854445	91379749		
19	243427313	211711199		
29	331306009	287722365		
39	404706652	364865429		
49	459453253	411295312		
59	492887883	441678259		

In step 5, two polynomials with degree 3 separately for male and female populations are applied to these kind of data where it is well known that in demographic research they are much applicable. As such the following equation is considered

$$y = a + bx + cx^2 + dx^3$$

where y is the dependent and x the independent variables and a is the intercept and d, c, and d are coefficients. They are all estimated using the data in Table 5.

The two polynomials have been fitted and found fit for these data.

$$y = -30549906.331 + 19233731.991x - 266366.871x^2 + 1279.473 x^3$$
 for male, $y' = 130587.227 + 13914258.373x - 113590.864x^2 + 167.657x^3$ for female

and the coefficient of determination measured by R² for both the cases have been found to be highly significant (p<.001). These fittings were done in computer using SPSS (17 Version) package. Using these fitted polynomials separately for male and female, the cumulated (less than type) distributions are obtained. The final adjusted single year population starting from 0 to 59 are obtained simply by subtracting one step lower figures from one step higher values repeatedly upto the last figure. Table 6 gives the final adjusted single year age distribution for

TABLE 6: Finally adjusted single year age data, one up to fifty nine, India, 2001

		adjusted sii		,•,	l l l l l l l l l l l l l l l l l l l	, , , , , , , , , , , , , , , , , , , ,	, 2001
AGE	MALE	FEMALE	PERSON	AGE	MALE	FEMALE	PERSON
1	18968645	13800835	32769480	31	6556362	7453146	14009508
2	18443588	13574659	32018247	32	6261610	7257149	13518759
3	17926208	13349490	31275698	33	5974535	7062157	13036692
4	17416504	13125326	30541830	34	5695137	6868172	12563309
5	16914478	12902168	29816646	35	5423416	6675192	12098608
6	16420128	12680016	29100144	36	5159372	6483218	11642590
7	15933456	12458870	28392326	37	4903004	6292250	11195254
8	15454460	12238729	27693189	38	4654313	6102288	10756601
9	14983141	12019595	27002736	39	4413299	5913333	10326632
10	14519499	11801467	26320966	40	4179962	5725383	9905345
11	14063533	11584345	25647878	41	3954302	5538438	9492740
12	13615245	11368228	24983473	42	3736319	5352500	9088819
13	13174633	11153118	24327751	43	3526012	5167568	8693580
14	12741698	10939013	23680711	44	3323382	4983642	8307024
15	12316440	10725915	23042355	45	3128430	4800722	7929152
16	11898859	10513822	22412681	46	2941154	4618807	7559961
17	11488955	10302736	21791691	47	2761554	4437899	7199453
18	11086727	10092655	21179382	48	2589632	4257997	6847629
19	10692177	9883580	20575757	49	2425386	4079100	6504486
20	10305303	9675511	19980814	50	2268818	3901209	6170027
21	9926106	9468448	19394554	51	2119926	3724325	5844251
22	9554586	9262391	18816977	52	1978711	3548446	5527157
23	9190742	9057340	18248082	53	1845173	3373573	5218746
24	8834576	8853295	17687871	54	1719311	3199707	4919018
25	8486086	8650256	17136342	55	1601127	3026846	4627973
26	8145273	8448223	16593496	56	1490619	2854991	4345610
27	7812137	8247196	16059333	57	1387788	2684142	4071930
28	7486678	8047175	15533853	58	1292635	2514299	3806934
29	7168896	7848159	15017055	59	1205157	2345462	3550619
30	6858791	7650150	14508941	60+	37768327	24265284	62033611

The adjusted single year distributions of population according to two sexes from ages 1 to 59 gave a monotonically decreasing series with male figures always being greater than females. The '0' population can be estimated using vital statistics and life table survival function. This part is not done here because the main purpose of the paper is to give a methodology on arriving at an adjusted single year age data using only a raw grouped age data usually available just after a few months census is over in those developing countries. It indicated a true age data in single year with consistent nature. However, the task is not completed here. In theory two things are yet to be tested i.e., smoothness and fit. For the former, the figures showed a smooth series, although the smoothness could have been done by forming difference table and fitness of the data with the observed figures could also have been done. As the raw single year data are not yet available, that part is yet to be tested. If time allows from the conference, this can also be done as and when they become available. Alternatively, this part of the work may be completed by the future generation.

References

Mukhopadhyay, B.K. 1986. An age adjustment of very young children of India, 1981 and reappraisal of fertility and mortality rates: A model appraoch, *Genus*, Vol. XLII-n.3-4, Roma, Italy.

Som, R.K. 1973. *Recall Lapse in Demographic Enquiries*, Bombay, Asia Publishing House.

United Nations. 1983. *Indirect techniques for demographic estimation*, Manual X, UN Publication, New York, USA.

Zelnik, M. 1961. Age heaping in the United States Census, *Milbank Memorial Fund Quarterly*, 39.