
TIME DEPENDENCY IN DIFFUSION MODELS 1 

 

Time Dependency in Diffusion Models: Gamma-Diffusion Models 

as an Alternative to the Hernes Model 

 
Jean-Marie Le Goff 

University of Lausanne 

 

Contact: Jean-Marie.LeGoff@unil.ch 

 

 1



TIME DEPENDENCY IN DIFFUSION MODELS 2 

Abstract 

Marriage process in a cohort is sometimes analyzed with a Hernes model.  This model 

presents a convenient property that clearly allows one to distinguish the quantum effect in the 

cohort from the tempo effect.  In its original paper, Hernes (1972) formulates his model in 

terms of diffusion or contagion of the idea of marriage from people already married to those 

not yet married.  The spread of the proportion of married people in the cohort has an 

increasing effect on the risk of marriage.  However, this increasing effect is slowed down by 

the fact that unmarried people progressively cease to be attractive on the marriage market 

when aging.  Hernes mentions that this decreasing force could be related to another 

mechanism: Each individual in the cohort is heterogeneous in his or her susceptibility to get 

married.  Persons who have a better susceptibility to marry will marry early, and the weight of 

individuals with worse susceptibility will be higher and higher as time goes on.  The 

consequence of the heterogeneity in susceptibility is a negative effect on the risk to marry, 

which slows down the increasing effect due to the mechanism of diffusion.  We believe that 

this second mechanism no longer corresponds to the model formally specified by Hernes.  

This paper shows models corresponding to this mechanism, the gamma-logistic and the 

gamma-mixed influence diffusion models.  These models are estimated on data of the 

Wisconsin Longitudinal Study. 

 Keywords: Diffusion models, Hernes model, Gamma-diffusion models, Event history 
analysis 
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Time Dependency in Diffusion Models: Gamma-Diffusion Models 

as an Alternative to the Hernes Model 

The Hernes model is classically used to analyze marriage across cohorts (Hernes, 

1972; Diekmann, 1989; Goldstein & Kenney, 2001).  This model presents a capable property 

to distinguish clearly the quantum effect in the cohort (i.e., the proportion of married people) 

from the tempo effect; that is, the timing of marriage (Billari & Toulemon, 2006).  At the 

opposite of other popular models used in the analysis of marriages—for example, in the 

Coale-McNeil model—the quantum effect is considered as a fraction of people predetermined 

from the beginning of the marriage process to remain unmarried (Coale & McNeil, 1972).  If 

the Hernes model was originally estimated on aggregated data, it has been incorporated in the 

corpus of Event History Analysis models and can be estimated on individual history data 

(Wu, 1990; Rohwer & Pötter, 2002). 

In his seminal paper (Hernes, 1972), Hernes formulates his model in terms of diffusion 

or contagion of the idea of marriage from people already married to those not yet married.  

Contagion is determined by a mechanism of imitation by non-married persons or by a 

mechanism of persuasion of married persons on non-married individuals.  Whatever the 

mechanism, the spread in the proportion of married people in the cohort has an increasing 

effect on the risk of marriage.  However, Hernes postulates that an opposing force slows 

down this diffusion effect because unmarried people progressively cease to be attractive on 

the marriage market as they age.  As a consequence, there is a decreasing effect on the hazard 

of marriage.  The overall hazard of marriage then results in two components: increasing in 

relation to the diffusion of marriage in the cohort and decreasing as a consequence of the 

depreciation of the marriageability.  Later, Diekmann proposed the log-logistic model as an 

alternative to Hernes model, with the same opposing mechanisms of diffusion and 

depreciation of the marriageability. 
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In its 1972 paper, Hernes mentions that the decreasing force can result from another 

mechanism; Aging people who remained unmarried are those, for example, who have never 

held a prestigious job and, for this reason, are unattractive on the marriage market.  The point, 

here is on individual heterogeneity.  In another and more precise paper, Hernes (1976) uses 

the term of structural heterogeneity: “when a capacity is differentially distributed in the 

population” (p. 428).  The mechanism underlying the distribution of the risk of marriage for 

the cohort is different from the precedent described.  This mechanism is similar to those 

described with notions of unobserved heterogeneity or of frailty in unemployment studies and 

mortality studies, respectively (Heckman & Singer, 1982; Vaupel, Manton, & Stallard, 1979).  

In the present case, those in the cohort who have a better ability to marry will marry early, and 

the weight of people with unfavorable capacities will become progressively higher and higher 

as time goes on.  As a consequence, the differential ability results in a negative effect on the 

risk to marry, which slows the increasing effect due to the mechanism of diffusion.  A similar 

effect could be described if each individual in the cohort differs by his or her own 

“susceptibility” to adopt the behavior when in contact with someone already married who 

transmits the idea of marriage (Strang & Tuma, 1993). 

As in unemployment or mortality studies, the difficulty is that the differential ability or 

susceptibility can be due to unobserved characteristics of persons.  This unobserved 

heterogeneity then has to be incorporated in the models.  In this paper, we propose two 

diffusion models that introduce an unobserved ability or susceptibility of persons to adopt 

behavior or an innovation that can be estimated on individual retrospective data.  In the first 

model, called the gamma-logistic model, the diffusion mechanism is described by the classical 

logistic curve while the unobserved ability or susceptibility of individuals is patterned by a 

gamma distribution.  In the second model, called the gamma-mixed influence diffusion model, 

the unobserved heterogeneity is previously patterned by a gamma distribution while there are 
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two processes of diffusion: The first process is due to internal influence—that is, influence of 

persons who already adopted the behavior on those who did not yet adopt.  The second is due 

to external influence such as media, advertising, and institutions that diffuse norms about 

marriage, and so on. 

In the first section of the paper, after a recall of the Hernes model specification, we 

present the gamma-logistic and the gamma-mixed influence models.  In the second section, 

we apply these models in the case of marriage of men and women interviewed in the 

Wisconsin Longitudinal Study.  We are especially interested to compare the fit of these 

models with the fit of a Hernes model and a log-logistic model. 

Time Dependency in Diffusion Models 
 

This section discusses a general family of diffusion model proposed by Hernes in its 

second influential paper on diffusion models (Hernes, 1976).  This general formulation is 

interesting because all models evoked in the introduction of the present paper—the Hernes 

model, the log-logistic model, logistic and mixed influence model—are particular forms of 

this general formulation.  This model can be formalized for each kind of diffusion, such as the 

propagation of an innovation, behavior, a rumor, and eventually a contagious illness.  

However, we have especially in mind the diffusion of marriage in a cohort.  The model can be 

read as a general mixed-influence diffusion model (Mahajan & Peterson, 1985), in which 

transmission coefficients associated to external and internal influences vary with time.  As 

originally formulated by Hernes (1976, p 434), this model does not include unobserved 

susceptibility or ability to adopt the behavior, but we will include it later.  Let F(t), the 

cumulative proportion of persons already married between t0 and t; f(t), the probability density 

to get married which is also the derivative of F(t); S(t) the complementary of F(t), i.e., the 

proportion of people who are not married at time t: 

 

)()()()()()( tStFtqtStptf          (1) 
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The product F(t)S(t) represents the probability for two persons, one unmarried the 

other married, to interact in the absence of social barriers between groups of unmarried and 

married people.  q(t) is the rate of diffusion or contagion, given that an unmarried person is in 

contact with a married person in a unit of time.  In this general formulation, this rate is a 

function of time.  In the case of marriage, the coefficient of diffusion q(t) can be understood 

as the rate for a single person to get married, given that he or she receives information about 

marriage from an already married person in the cohort.  The level of this rate at time t can 

depend on several elements related to the predisposition of the person to marriage and to his 

or her position on the marriage market.  As formulated in this model, each person already 

married, even for a long time, is considered to have a potential influence on an unmarried 

person; this influence is equal among all already married people.  p(t), also a function of time, 

is the rate of adoption of the behavior due to external influence such as media, norms on 

marriage, and so on.  Strang and Tuma (1993) suggest another interpretation for p(t) in which 

it is no longer related to external influence but to the effect of individual endogenous 

characteristics on marriage rates. 

This model can be rewritten as a hazard rate function instead of a probability density 

function.  If h(t) symbolizes this hazard rate, as h(t)=f(t)/S(t): 

 

)()()()( tFtqtpth            (2) 

 

In the case of q(t)=0, adoption of diffusion depends only of intrinsic characteristics of 

each individual or of external influence.  In this case, p(t) can be shaped by one of the usual 

functions applied to a parametric event history model.  For example, if p(t) is considered to be 

constant (p(t)=p), then an exponential model is estimated.  But if p(t) is considered to be 

always increasing or decreasing, it can be estimated by a Weibull or a Gompertz function.   
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In the case of p(t)=0, the process of adoption of the behavior depends only on internal 

influences.  In this case, if q(t) is a constant (q(t)=q), the model corresponds to the well-

known logistic growth with q as coefficient of diffusion (Coleman, 1964; Griliches, 1957; 

Mahajan & Peterson, 1985).  In his first paper on the diffusion of marriage in American 

cohorts, Hernes (1972) rather supposes that q(t) is a decreasing function of time due to the 

fact that unmarried people progressively lose their ability to attract potential partners as they 

grow older.  This depreciation of the “marriageability” of a person on the marriage market 

draws a force opposed the force due to the process of diffusion.  An alternative meaning of 

this decreasing force on the hazard rate of marriage is proposed by Diekman (1989), who 

argues that it corresponds to a process of isolation of single persons as they get older and, 

consequently, a decrease of potential partners on the marriage market due to their isolation.  

The formulation proposed by Hernes for q(t) is:  

 

tAbtq )(            (3) 

 

A is the initial average “marriageability” (A>0), while b is the constant of deterioration 

of this ability (0<b<1).  After integration (Hernes, 1972) and reparametrization (Wu, 1990), 

the model is specified with three parameters (see Table 1): The first is related to the quantum 

effect of marriage, the second one to the tempo effect, while the third indicates the initial 

proportion of persons adopting the innovation (Billari & Toulemon, 2006).  The Hernes 

model owns the peculiarity to be defective, which means that the cumulated proportion F(t) of 

married persons does not necessary reach 1 at the end of the marriage process.  A fraction of 

person in a cohort is excluded from marriage due to the negative force on the marriage hazard 

rate becoming higher in absolute value to the positive force from the increase of already 

married persons.   
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Another decreasing function with time has been proposed by Diekmann (1989) for 

whom the most used log-logistic model can be interpreted as a diffusion model with a 

decreasing coefficient of diffusion with time.  In the case of the log-logistic model: 

t

b
tq )(                 (4) 

Where b>0.  The log-logistic model is more parsimonious than the Hernes model with 

only two parameters to estimate: one related to the initial conditions and the second to the 

decrease in time.  At the opposite of the Hernes model, the log-logistic model is not defective, 

which means that everyone is considered to have adopted the innovation by the end of the 

process.  Immunity can however be considered with the hypothesis that a fraction of persons 

in a cohort will never adopt the innovation (Brüederl & Diekmann, 1995).  This hypothesis—

which corresponds to estimate a split population or a cure model (Schmidt & Witte, 1988)—

means that according to some unobserved characteristics, some people are determined from 

the beginning of the process to remain unmarried.  Generalizations of the Hernes and/or the 

log-logistic models have been proposed by Yamaguchi (1994), Diekmann (1992), and Braun 

and Engelhard (2004).  Whatever these generalizations, the principle of a diffusion process 

countered by a loss of abilities remains.   

The classic mixed influence diffusion model corresponds to the hypothesis in which in 

equation 1 and 2, p(t) and q(t), are constant (p(t)=p; q(t)=q) (Mahajan & Peterson, 1985).  If 

this model has been introduced in mathematical sociology by Coleman (1964), it has been 

rather diffused in marketing research, consequently to the work of Bass (1969).  In this 

discipline, the peculiarity of this model is generally estimated on aggregated data on the 

diffusion of innovation products (Mahajan & Peterson).  If this model has been less estimated 

on individual data of adoption, its adaptation to the corpus of parametric methods of event 

history analysis with a procedure of estimation based on the likelihood maximization does not 
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present many difficulties (Bass, Jain, & Krishnan, 2000; Roberts & Lattin, 2000).  This model 

can be written: 

 

  )()()( tStqFptf           (5) 

It has been suggested that this model means that a fraction of persons adopts the 

behavior under external influences while others adopt it due to internal influences.  According 

to this point of view, former individuals are considered innovators while the later are imitators 

(Bass, 1969).  However, this point of view has been criticized for the fact that the mixed 

influence diffusion model, as specified, does not allow a clear distinction between innovators 

and imitators.  As it is formalized, this model means that one person can adopt the innovation 

either under external influences or internal influences (Tanny & Derzko, 1988).  Such a model 

could take into account the interesting case of demographic behavior such as marriage or 

union formation, since external influences can be considered as social pressure coming from 

persons other than pairs who already adopted the behavior or from institutions that diffuse 

social norms on marriage.  External can be for example parents or relatives, but also network 

channels in which social norms about marriage are diffused.  The mixed influence model, as 

initially formulated by Coleman (1964), is not defective; it does not allow that a fraction of 

individuals in a cohort remain unmarried.  Such a fraction can be introduced by estimating a 

split-population model in which, for unknown reasons or characteristics, a portion of 

individuals is determined to remain unmarried.  However, the introduction of general 

unobserved heterogeneity can also be envisioned. 

Unobserved Individual Susceptibility 

The Hernes and log-logistic models are based on the observation that for most 

diffusion processes, the shape of the growth curve is an asymmetric S shape, “with the upper 

shank of the S being more extended” (Lekvall & Wahlbin, 1973, p. 364).  Such an 
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asymmetric shape is usually observed in the case of several demographic behaviors, 

especially marriage.  Hypotheses made by Hernes (1972) and by Diekmann (1989) are that 

this asymmetry corresponds to a decrease in the transmission rate q(t) when time increases.  

However, an alternative hypothesis can be proposed: This hypothesis leans on notions of 

unobserved heterogeneity or frailty as it is developed in the analysis of unemployment and 

mortality (Heckman & Singer, 1982; Vaupel et al., 1979; Aalen, Borgan, & Gjessing, 2008).  

In the domain of mortality, frailty models assume that the general shape of the hazard rate is 

the same for each individual of a population but that each individual is characterized by his or 

her own frailty, which remains invariant as time passes.  The hazard rate of death for an 

individual corresponds to the product of the general shape of mortality hazard and the 

individual frailty.  Such a model means that at the beginning of the process, most frail people 

die while less frail take more and more weight in the population of survivals.  As a 

consequence, the hazard rate of decease is decreasing.   

By analogy with frailty models, diffusion processes of an innovation or behavior can 

be decomposed into two elements:  The first is the general shape of the diffusion, which could 

be called—following Strang and Tuma (1993)—the infectiousness from those who have 

adopted the behavior or, more preferably, the transmissibility of the innovation to persons 

who did not have yet adopted the behavior.  The second element corresponds to the 

susceptibility or the ability of an individual to adopt the innovation or the behavior.  The 

susceptibility is here the equivalent of the frailty or the unobserved heterogeneity with the 

common property to be unobserved.  This unobserved susceptibility can be related to the 

ability of a person to be in contact with persons who have already adopted the innovation or 

to a person’s ability to accept an innovation.  By hypothesis, it remains invariant as time goes 

on.  As in the case of frailty models, we suppose a proportional effect of the individual 
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susceptibility on the risk of adoption of the behavior.  If the starting model is the simplest 

model of logistic growth:  

 

 )()|( tqFuuth iii            (6) 

 

Where ui represents the individual unobserved susceptibility to adopt the innovation 

and represents the hazard rate for an individual given that he has susceptibility ui to 

adopt. q expresses the coefficient of transmissibility from person who already adopted.  If we 

suppose that ui is distributed such that its mean is equal to 1, then q represents the coefficient 

of transmission of the behavior to a person with an average susceptibility of adoption.   

)|( ii uth

However, the nature of individual susceptibility has to be better specified.  It is 

important to underline that this susceptibility is related to a person and not to possible 

transmitters and their “infectiousness” (Strang & Tuma, 1993).  As in the Hernes or the log-

logistic models, the model expressed in Eq. (6) supposes that everyone who adopted the 

behavior has the same infectiousness, whatever the moment of the adoption or the social 

proximity with potential adopters.  Susceptibility can be related to two series of factors:  The 

first type of factor can be related to the level of contact with others and, more generally, to the 

openness to receive information.  The second type of factor is related to the probability that 

someone adopts the innovation after he has acquired information about it.  For example, in the 

marketing research tradition, the susceptibility is related to the ability of a person to purchase 

the product (Jeuland, 1981, qtd. in Mahajan & Peterson, 1985; Roberts & Lattin, 2000).  This 

suggests that the susceptibility depends from the properties of the innovation, more generally 

of the object of diffusion.  Individual susceptibility is specific to the innovation and can be 

different according to what is diffused.  It then can be related to the openness toward the 

innovation but also to the context in which the person is living.  For example, if the behavior 

is the marriage, susceptibility can depend from the aversion degree to the marriage of the 
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person but also of its attractiveness on the marriage market.  The more a person is isolated 

from others or the more aversion he has toward the behavior—or the less the context is 

favorable for him—the lower his susceptibility to adopting the behavior.   

In Eq. (6), the transmissibility process follows a logistic growth.  Two opposite 

“forces” play a role on the process of adoption of the behavior.  As before, the first force is 

related to the increase of people who have already adopted the innovation with the effect of 

increasing the hazard rate.  The second force is related to the differential of susceptibility 

among individuals.  By analogy with frailty models, the more susceptible persons will first 

experiment the event.  Consequently, less susceptible individuals will progressively take more 

and more weight in the population of people who did not yet experiment the event along the 

time.  Such a model with a constant rate of transmission from people who already adopted the 

behavior to those who did not, and with an individual susceptibility to adopt the behavior then 

explains an S growth curve with a more extended upper shank as well as the Hernes or the 

log-logistic models.  This kind of model with individual susceptibility can be extended to the 

classic mixed influence model (Jeuland, 1981, qtd. in Mahajan & Peterson, 1985).  The 

hypothesis here is that the individual susceptibility to adopt is similar whether under external 

or internal influence. 

 

 )()|( tqFpuuth iii            (7) 

In this case, p and q represent the average susceptibility of adoption under each of the 

influences.  As before, the model displays two opposing forces—one related to the increase of 

the force of adoption due to increase of persons that already have adopted the behavior while 

the second is related to the increase of the weight of the less susceptible to adopt in the 

population.  Finally, by similarity with the general model expressed in Eq. (1), we can write a 
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general model in which external and internal diffusion coefficients are expressions of time 

and into which is introduced unobserved susceptibility:  

  

 )()()()|( tFtqtpuuth iii           (8) 

From Individual Hazard to Population Hazard 

Expressions (6) to (8) are individual hazard rate that depend of individual 

susceptibility.  Following our analogy between the susceptibility to adopt an innovation or 

behavior and the frailty in mortality research, we now assume that ui is gamma distributed 

with a mean equal to 1 and a variance κ.  With the assumption of a gamma distributed 

unobserved heterogeneity model, it has been shown that whatever the shape of the underlying 

or basic hazard rate (Aalen et al., 2008): 

 

)(1

)(
)(

tC

t
th





            (9) 

and:  

  
1

)(1)(  tCtS            (10) 

h(t) and S(t) represents respectively the hazard rate at the level of the population and 

the probability of not having experienced the event or the behavior at time t while α(t) 

represents the basic hazard rate and C(t) represents the cumulated basic hazard rate from  

0 to t: 

          (11) 
t

duutC
0

)()( 

Expressions (9) and (10) mean that: 

          (12)   )()()( tStth 

As S(t) = 1-F(t) and if we consider that α(t) is shaped by the Hernes mixed-influence 

diffusion model as expressed in expression (8), i.e., α(t) = [p(t)+q(t)]F(t), then: 
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        (13)    )(1)()()()( tFtFtqtpth  


And then the density of adoption becomes:  

       (14)     1)(1)()()()( tFtFtqtptf

As the Hernes (1976) mixed-influence diffusion model is the more general expression, 

this property of diffusion models with a gamma-distributed susceptibility remains when q is a 

constant and when p is equal to 0 (logistic diffusion model) or is a constant (classic mixed-

influence diffusion model).  These two last models will be estimated on a dataset of the 

Wisconsin Longitudinal Study on marriage.   

Application to Wisconsin Longitudinal Study Data 

In this section, we estimate different models of diffusion on the Wisconsin 

Longitudinal Study Sample (WLS) (2006).  The Wisconsin Longitudinal Study is a panel in 

which the sample is composed of one-third of men and women who graduated from a 

Wisconsin high school in 1957 (N = 10 317).  Several interviews were conducted between 

1957 and 2005 on this sample but sometimes also with their sibling or marital partner.  An 

interview in 1975 on a subsample of 4,330 men and 4,808 women (N = 9138) reconstitutes 

the marital history of each individual, especially the date of the first marriage.  The estimation 

of the diffusion model on this sample necessitates the hypothesis that behaviors of the sample 

reflect ones in the entire cohort.  Such a graduate school cohort can be considered a little 

ancient and, as a consequence, the pattern of marriage cannot reflect contemporaneous 

marriage behaviors.  However, the sample of the WLS presents several advantages: First, as 

mentioned, it is composed of graduate students of secondary schools in Wisconsin, and we 

can assume that this population was socialized in a similar manner. 

A first examination of data shows that marriages are rare before June 1957 but start to 

increase at this date, especially in the case of women.  We suppose that this is because most of 

youth left school after their second degree.  We decided to consider May 1957 as the starting 

 14



TIME DEPENDENCY IN DIFFUSION MODELS 15 

time (t0) of the marriage process and discounted all persons who married before this date.  

The final sample is composed of 4,319 men and 4,786 women.  Non-married persons at the 

time of the 1975 interview were censored (respectively 7.1% of men and 6.0% of women). 

In a first step, we estimate four models for each gender: the Hernes (1972) model, the 

split population log-logistic model (Brüederl & Diekmann, 1995), the logistic-gamma model 

and the gamma-mixed diffusion model.  For each of these models, if three parameters have to 

be estimated, these parameters have different meanings according to the model.  Hernes 

models is estimated using a specification of the probability density, survival, and likelihood 

functions proposed by Wu (1990) (Rohwer & Pötter, 2002; Billari & Toulemon, 2006).  One 

parameter is related to the initial marriageability of persons, the second to the speed of decline 

of this ability, and the third to the “quantum” of the marriage process.  Log-logistic models 

are estimated by specifying a likelihood function allowing for the fact that a fraction, to be 

estimated, of the cohort will never get married (Schmidt & Witte, 1988; Box-Stephensmeier 

& Jones, 2004).  In this case, the first parameter is related to the initial fraction of persons 

already married at the beginning of the process, from which starts the diffusion process.  The 

second parameter is related to the decreasing diffusion coefficient.  The third parameter 

indicates the fraction of persons who are determined from the beginning of the process to 

remain unmarried.  Logistic models are unusual in the corpus of event history analysis but 

imply two parameters estimating the initial fraction of married women and the diffusion 

coefficient (Banks, 1994; Braun & Engelhart, 2004).  Here, a third parameter estimates the 

variance of the unobserved gamma function of susceptibility.  In the case of the gamma-

mixed influence diffusion model, parameters allow estimating coefficients of external and 

internal diffusion (Bass, Jain, & Krishnan, 2000) and the variance of the gamma function.   

Models were estimated with TDA version 6.4, especially with the use of the frml 

command, which allows programming its own likelihood function for event history models 

 15



TIME DEPENDENCY IN DIFFUSION MODELS 16 

(Rohwer & Pötter, 2002).  An example for the estimation of the Hernes model is developed in 

the user’s manual.  We also use sometimes the function mle (maximum likelihood estimation) 

of the library stats4 in R (Venable & Ripley, 2002).  All parameters, except when they are 

proportions, must be positive, which means that are estimated their logarithm.  Proportions 

must be definite between 0 and 1, and then are estimated their logit transform.  For example, 

in the case of the gamma-mixed influence model, all parameters are positive definite, which 

means that are estimated their logarithm: 

exp(c)

)exp(

)exp(






bq

ap

            (15) 

Where a, b and c are parameters to be estimated.  Table 1 gives formulas of models 

after integration for F(t) and h(t) and results of their estimation, while Figure 1 draws for men 

and women cumulated function of marriages as estimated in each model.  There are no 

possibilities to compare models with the deviance or the BIC, for example, since models are 

very different.  However, if we compare the maximum of the logarithm of likelihood obtained 

for each model, it is the highest in the case of the gamma-mixed influence model for both men 

and women.  This result seems to indicate that this model fits better the data than other 

estimated models.  Estimation of the gamma-logistic model presents the lowest maximum of 

logarithm of likelihood, which seems to mean that this model is the worst.  Hernes model and 

the log-logistic model present intermediary maximum of log-likelihood, the latter higher than 

the former.  Differences in maximum likelihood are more pronounced for women than for 

men.  We suppose that is because the process of marriage starts from the end of school for 

women.  Fits show that gamma-mixed influence models is very near of the non-parametric 

cumulative function of occurrence of the event—computed from Kaplan-Meier estimators of 

the survival function—while there is an overestimation of it at the end of the process in the 
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case of log-logistic model.  In the case of the Hernes and the gamma-logistic model, survival 

curves are first overestimated and after underestimated. 

 

Insert Figure 1 here 

 

Insert Table 1 here 

 

Covariates can be included in the mixed influence diffusion model.  In this case, if 

covariates x1, x2, x3, .., xn represent characteristics that are supposed to have an influence on 

the external influence parameter, covariates y1, y2, y3, .., yn on the internal influence parameter 

and covariates z1, z2, z3, .., zn on the variance of the gamma distribution, then different 

parameters can be estimated assuming that : 
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        (16) 

Where the different parameters a, b and c have to be estimated.  The same 

characteristics can be introduced in each part of the model.  This result means, however, that 

processes of diffusion are independent according to the characteristics introduced in the 

model.  In the present case, we dispose of the year of birth of each respondent.  The majority 

of them were born in 1939 (74.7% and 80.4% of men and women, respectively).  However, 

some of them were born before (21.8% and 14.4%, respectively), while a few were born in 

1940 (3.5% and 5.2%).  One can suppose that the external pressure to marriage—from family, 

social network, and so on—will be higher for the oldest because of their age.  In this case, we 

can expect that the p parameter will be higher than in the case of those born in 1939.  In 

contrast, we can suppose that youngest will have less pressure from their family, so the 

p parameter will be lower than in the case of those born in 1939.  However, there is no reason 

to think that internal influence will be different as well as variation in susceptibility to adopt 
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the behavior changes according to birth year.  To verify these hypotheses, for each sex, we 

estimate a model in which are introduced covariates related to the birth year of respondents in 

each parameter of the gamma-mixed influence diffusion model.  Birth year is dichotomized 

into three covariates: those born before 1939, those born during this year (reference category), 

and those born after.   

Models estimation confirms the hypothesis for women as well as for men (see 

Table 2).  In the case of women born before 1939, the coefficient associated to the external 

influence parameter is significant and positive, which means a higher effect of external 

influence in comparison with women born in 1939.  Women born after 1939 present a 

negative coefficient, which means less external influence on the hazard of marriage.  

Parameters related to these two covariates are not significant in the case of the internal 

influence parameter and variation in susceptibility to be influenced.  Results are similar for 

men except that there is a significant effect only in the case of persons born before 1939 and 

not in those born after. 

Conclusion 

We propose here—as an alternative to the Hernes model—two models: the gamma-

logistic model and the gamma-mixed influence diffusion model.  The Hernes model 

postulates that a diffusion effect is slowed down by the decrease of the marriageability of 

persons as time goes on.  The models we proposed are based on another suggestion of Hernes 

(1972, 1976) in which the diffusion effect is progressively counterbalanced by heterogeneity 

in the susceptibility of persons to adopt the behavior.  Persons with the higher susceptibility 

have the higher risk to adopt, and those who have the lower risk take more and more weight 

in the population when time goes on.  The models we developed are similar to models with a 

gamma frailty in mortality studies.  The estimation of one of this model—the gamma-logistic 
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model—on the Wisconsin longitudinal data on marriage fits less well than the Hernes and the 

log-logistic models; the other—the gamma-mixed diffusion model—fits better on data.   

Such results have also been obtained in the case of the National Child Development 

Study marriage data of regularly interviewed persons born between the third and sixth of 

March 1958 in Great Britain (not shown here).  These results encourage us to estimate this 

model on the case of diffusion of other behaviors. 
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Table 1 

Diffusion Models and Estimation 

Model Cumulative function F(t) and hazard function h(t) 
Estimates 
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Model Cumulative function F(t) and hazard function h(t) 
Estimates 

Men 
Estimates 
Women 

Gamma-Mixed 
Influence 
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log(κ)=-0.20*** 
log(p)=-6.19*** 
log(q)=-2.84*** 
 
LMV=-21170.53 
 

log(κ)=-0.19*** 
log(p)=-4.737*** 
log(q)=-2.80*** 
 
LMV=-22312.46 
 

Note: Reparametrization of the Hernes model by Wu (1990): λ=b, β=-A/log(b). 

*** Significant at the level of 1 per 1000.  
** Significant at the level of 1 per 100. 
* Significant at the level of 5 per 100. 

aHernes, 1972; Wu, 1990. 
bBrüederl & Diekmann, 1995. 

(Table 1, cont’d) 
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Table 2 

Estimated Coefficients of Models Taking into Account the Birth Year of Respondents 

 Men Women 

 External 
Influence 

Internal 
Influence 

Susceptibility 
External 
Influence 

Internal 
Influence 

Susceptibility 

Intercept 

(Born in 
1939) 

-6.42*** -2.79*** -0.14*** -4.81*** -2.78*** -0.21*** 

Born 
before 
1939 

0.90*** -0.17 -0.085 0.58*** -0.08 0.17 

Born  
after 
1939 

-0.40 0.0427 -0.52 -0.51*** 0.10 0.16 

LMV -21127.63 -22284.5 

*** Significant at the level of 1 per 1000. 
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Figure 1. Fit of different diffusion models. 
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