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Abstract 

 

In recent decades, life expectancy in developed countries has risen to historically 

unprecedented levels driven by an unforeseen decline in mortality rates. The 

prospects of further reductions are of fundamental importance in various areas. In this 

context, this paper proposes a new approach to forecast future mortality and life 

expectancy in the event of a structural change. We show how recent advances in 

statistical testing for structural changes can be used to arrive at a properly specified 

forecasting model. Specifically, the results of tests for a change in the trend of the 

general level of mortality and for the presence of a unit-root are used to identify the 

appropriate model to be estimated and used to carry out the projections. The proposed 

methodology is applied to post-1950 time series mortality data for 18 developed 

countries. Structural changes in the rate of decline in overall mortality are found for 

almost every country considered and especially in the male populations. These are 

associated with a more accentuated decline in mortality in recent years. We also 

illustrate how accounting for such a change can lead to a major impact in mortality 

and life expectancy forecasts over the next decades. 

 

 

Keywords: Life expectancy; Mortality forecasting; Lee-Carter model; Structural 

change; Unit root. 
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1. INTRODUCTION 

 

Over the past decades, life expectancy in developed countries has risen to 

historically unprecedented levels. The prospects of further future reductions in 

mortality rates are of fundamental importance in various areas such as demography, 

actuarial studies, public health, social insurance planning, and economic policy. Over 

the last years, significant progress has been made in mortality forecasting (for a recent 

review see Booth, 2006). The most popular approaches to long-term forecasting are 

based on the Lee and Carter (1992) model. It describes the time-series movement of 

age-specific mortality as a function of a latent level of mortality, also known as the 

overall mortality index, which can be forecasted using simple time-series methods. 

The method was initially used to forecast mortality in the U.S.,
1
 but since then it has 

been applied to many other countries (amongst others see Fígoli, 1998; Tuljapurkar 

and Boe, 1998; Lee, 2000; Carter and Prskawetz, 2001; Lee and Miller, 2001; Booth 

et al., 2002; Brouhns and Denuit, 2002; Renshaw and Haberman, 2003; Lundstrom 

and Qvist, 2004; and Koissi et al., 2006). 

The original Lee-Carter model has also received a number of criticisms (see 

the discussion in Lee and Miller, 2001) and several extensions have been proposed in 

the literature (see Booth et al., 2006). One major issue concerns the stability of the 

model over time. Since the method is usually applied to long time-series there is a 

risk that important structural changes may have occurred in the past. And any 

neglected structural change in the estimation period may result in forecasts that have 

a tendency to deviate from the future realizations of the mortality index, leading to 

potentially large long-term forecast errors. In fact, historically, mortality in the U.S. 

has not always declined in a linear way as depicted in Lee and Carter (1992) for the 

period 1900-1989. These authors also re-estimated their random walk with drift 

model for the mortality index for several shorter and more recent periods and 

concluded that there was some instability. As noted by Lee (2000), if one had used 

their method to extrapolate the mortality index backward in time, one would arrive at 

                                                           
1
 The U.S. Census Bureau has also adopted this method to compute life expectancy projections (see 

Hollmann et al., 2000). 
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too high mortality rates for the beginning of the 19
th
 century. Tuljapurkar and Boe 

(1998) provide evidence that the rate of mortality decline has varied substantially 

from one decade to the next in Canada, Mexico, and the U.S. Other studies also 

document that there has been a systematic overestimation of the projected mortality 

rates in many countries (Stoto, 1983, Koissi et al., 2006). In a multi-country 

comparison of several versions of the Lee-Carter method, Booth et al. (2006) find 

significant differences in the forecasting performance when alternative fitting periods 

are used, providing evidence of different trends in the mortality rate. 

In this paper we propose a new consistent approach to forecast mortality rates 

and life expectancies in the event of a structural change in the trend of the overall 

mortality index. The proposed method is based on recent advances in testing and 

estimating structural change models, and allows one to arrive at an adequate time-

series forecasting model that can be estimated using the available sample. In 

particular, by following the proposed method, one is able to detect if a change is 

present or not, to estimate the date where the change occurs, and to determine if the 

appropriate forecasting model should be based on the levels or the first-differences of 

the mortality index series. The last distinction is important as the two alternatives lead 

to substantial differences in the amplitudes of the forecast confidence intervals.  

The proposed methodology is applied to post-1950 time-series mortality data 

for 18 developed countries. Structural changes in the rate of decline in the overall 

mortality rate are found for almost every country considered and especially in the 

male populations. We consider as an example the case of Portuguese male mortality 

and show that accounting for a structural change leads to a major impact in mortality 

and life expectancy forecasts over the next decades. 

The paper is organized as follows. Section 2 presents a brief review of the 

Lee-Carter method and its extensions. The proposed approach to forecast mortality in 

the presence of structural change is described in Section 3. The empirical application 

is presented in Section 4. Finally, Section 5 concludes. 
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2. THE LEE-CARTER METHOD 

 

2.1. The demographic model  

 

The Lee-Carter method combines a demographic model of age-specific 

mortality rates with statistical time-series forecasting methods. Let ( )txµ  denote the 

mortality force at age x during calendar year t, and txD ,  denote the number of deaths 

recorded at age x during year t from an exposure-to-risk txE , . We assume that age-

specific mortality rates are constant within bands of age and time, but allowed to vary 

from one band to the next. Specifically, given any integer age x and a calendar year t, 

it is assumed that 

 

 ( ) ( )tt xx µµ τ =+   for  10 <≤ τ . (1) 

 

Under (1), estimates of ( )txµ , denoted as ( )txµ̂ , are given by the following ratio: 

 

 ( )
tx

tx

x
E

D
t

,

,ˆ =µ . (2) 

 

The Lee-Carter (1992) model assumes that the observed force of mortality for 

any age x is driven by a common time-varying component, denoted by tk , which is 

also referred to as the overall mortality index. More precisely, the following relation 

is assumed:  

 

 ( ) ( )tkt xtxxx εβαµ ++=ˆln  (3) 

 

where ( )txµ̂  is given by (2), xα  are the age-specific parameters that affect the overall 

level of ( )txµ̂ln  over time, xβ  are the age-specific parameters that characterize the 

sensitivity of ( )txµ̂ln  to changes in the mortality index 
tk , and ( )txε  represent error 
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terms capturing particular age-specific historical influences not explained by the 

model. These are assumed to have zero mean and constant variance 2

εσ .  

Lee and Carter (1992) propose a two-stage procedure to estimate the model 

given by equation (3). First, a least-squares solution to estimate 
xα , 

xβ , and tk  is 

found.  Since the model is clearly underdetermined, some normalization constraints 

are imposed to obtain a unique solution: the sum of the 
xβ  over all ages equals one 

and the sum of the tk  over time equals zero. As a consequence, the xα  will be equal 

to the average values of ( )txµ̂ln  over time. The solution is found using the singular 

value decomposition. Since the model is written in terms of log mortality, the 

observed total number of deaths in each year will not equal the sum of the fitted 

deaths by age. To ensure this equality, the 
tk  are estimated a second time, taking the 

xα  and xβ  estimates from the first step, such that for each year t, given the actual age 

distribution for the population, the implied number of deaths equals the observed 

number of deaths.  

The homoskedasticity assumption on the error term ( )txε , implied by the 

singular value decomposition estimation of the parameters 
xα , 

xβ , and tk , has been 

considered fairly unrealistic (Wilmoth, 1993; Alho, 2000) since the logarithm of the 

observed force of mortality is much more volatile at old ages, where the number of 

deaths and of those exposed to risk are relatively small. To circumvent this problem, 

Brouhns et al. (2002) propose an alternative model that keeps the Lee-Carter log-

bilinear form for the force of mortality, but replaces the least-squares approach with a 

Poisson regression for the number of deaths. Specifically, they consider the following 

model describing the distribution of txD , : 

 

 ( )( )tEPoissonD xtxtx µ,, ~     with    ( ) ( )txxx kt βαµ += exp , (4) 

 

where the parameters xα , xβ , and tk  retain the meaning originally attributed by the 

Lee-Carter model. These parameters can be estimated by maximum likelihood still 

subject to the model identification constraints that the sum of the xβ  over all ages 
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equals unity and the sum of the tk  over time equals zero. The second stage in the 

estimation of the 
tk , required in the classical Lee-Carter model, is no longer 

necessary with this approach. 

Given the estimated xα  and xβ  in equation (3) or (4), the problem of 

forecasting age-specific mortality rates and, consequently, life expectancies, is 

reduced to forecasting the mortality index tk . 

 

2.2. Modeling the index of mortality 

 

Lee and Carter (1992) propose using the Box-Jenkins methodology to arrive at 

an appropriate ARIMA model to forecast the index of mortality. In that methodology, 

the first step always consists of determining if some transformation of the series is 

necessary to induce stationarity before identifying and estimating the forecasting 

model. Many studies have arrived at an ARIMA(p, 1, q) model, that is, a stationary 

ARMA(p, q) model fitted to the first-differences of the mortality index. Series whose 

first-differences are stationary are also called difference-stationary, and are described 

by a unit-root in their autoregressive representation. The usual approach to check this 

is by analysing the behaviour of the empirical autocorrelation functions. However, it 

is also possible to use formal statistical tests. The most popular are variants of the 

original Dickey and Fuller (1979) tests for the presence of a unit-root. 

In the Lee and Carter (1992) study of U.S. mortality, the authors arrive at an 

ARIMA (0,1,0) model, that is, a random walk with drift: 

 

 
ttt udkk +=− −1 , (5) 

 

where the drift d gives the mean annual change in tk  and tu  are i.i.d. errors. The drift 

d is estimated as the time-average of the series of first-differences 1t t tk k k −∆ = − . 

Given any initial value for tk , this model implies that: 

 

 stttst uudskk +++ ++++= L1 , (6) 
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that is, future values of the mortality index equal the sum of a deterministic linear 

trend component with slope d, plus an error component given by the sum of several 

shocks u. Since part of the uncertainty when forecasting kt+s comes from the 

cumulative sum of the shocks, 
1t t su u+ ++ +L , it follows that the forecast uncertainty 

grows with the forecast horizon s. 

If for a particular mortality index series the unit-root/difference-stationary 

hypothesis is rejected, the alternative hypothesis that should be considered would be 

that of stationarity around a linear trend capturing the linear decline in mortality. In 

such a case, the mortality index would be described by the following trend-stationary 

model: 

 

 
tt utddk ++= 10
, (7) 

 

with ut being a stationary ARMA process. In this equation, the d1 parameter 

represents the slope of the linear trend. Since this model is specified and estimated in 

the levels of kt, not the first-differences, it will in general produce forecasts that are 

different from the previous unit-root model. Also, given that in this model the 

deviations from the linear trend, given by ut, are stationary, the forecast uncertainty 

will no longer have a tendency to increase with the forecast horizon.  

Unfortunately, the usual procedures based on the analysis of the 

autocorrelation function or on unit-root tests to decide about the appropriate class of 

forecasting model to be used, are only valid if the linear trend, and in particular the 

trend slope d in model (6) or d1 in model (7), has remained constant over time. In the 

next section we discuss in more depth the implications of the presence of a structural 

change in the trend of the mortality index and propose a suitable approach to cope 

with this possibility when forecasting the mortality index. 

 

3. ALLOWING FOR A STRUCTURAL CHANGE  

 

A large literature on structural change models has emerged in the last years 

(see the surveys by Perron 2006, 2008). An important result is that, when producing 
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long-term forecasts, any neglected or wrongly placed structural change occurring in 

the estimation phase may result in forecasts with a tendency to deviate from the future 

realizations of the series, resulting in potentially large forecast errors. It is also known 

that the correct approach to test for and estimate a model with a structural change is 

highly dependent on the stationarity properties of the time-series process. In 

particular, if the mortality index series kt is known to be trend-stationary then i) the 

tests for the presence of a structural change in the trend and ii) the estimation of the 

forecasting model should both be carried out using regressions based on the levels of 

the series. On the other hand, if it is known that the kt series is non-stationary with a 

unit-root, first-differences should be used instead. In general, the results obtained by 

following these two alternatives can be quite different in terms of a presence or not of 

a structural change and, in case one is detected, in terms of its dating.  

As mentioned above, the traditional approaches to detect the presence of a 

unit-root and the need to first-difference the data are based on examining the 

empirical autocorrelation functions or on performing standard unit-root tests. 

However, as shown by Perron (1989), these approaches are not valid if a structural 

change is present, as they have a tendency to wrongly suggest a unit-root when the 

series is, in fact, stationary around a broken trend. As a solution, Perron (1997) 

proposes a modified unit-root test that is valid in the presence of a structural change 

at a known date. Zivot and Andrews (1992), Perron and Rodríguez (2003), and other 

authors have extended the test to the case where the change date is not known and 

must be estimated. However, when no change is actually present, several problems 

arise. As shown in Harris et al. (2009) (henceforth HHLT) there will be severe 

efficiency losses. Moreover, the estimated change date suggested by these tests may 

be spurious since, as shown by Nunes et al. (1995), the presence of a unit-root may 

lead one to erroneously find a structural change when there is none. In fact, when 

using the Zivot and Andrews (1992) unit-root test, the estimated change date is not 

even consistent for the true date if a change does occur.
2
 Another issue is that the 

correct critical values to implement these tests become dependent on whether a 

structural change is present or not.   

                                                           
2
 An example where such an inappropriate approach is followed is Chan et al. (2008). 
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We propose a solution to this dilemma in the context of mortality forecasting 

by following a simple and consistent sequential approach based on recent statistical 

results in the literature of structural change. In a first step, since it is not possible to 

know beforehand if there is a unit-root or not, we apply a test for a structural change 

in the trend proposed by Harvey et al. (2009) (henceforth HLT) that is valid 

regardless of whether the series is difference-stationary or trend-stationary. Secondly, 

as in HHLT, the result of this structural change test is used to decide on the 

appropriate unit-root test to use: with or without allowing for a structural change. 

Thirdly, if according to the HLT test a change is present, the break date is estimated 

taking into account the result of the HHLT test, that is, a) using the first-differences 

of the series if a unit-root is found or b) using the levels of the series otherwise. 

Finally, based on the conclusions of the previous steps, the appropriate ARIMA 

model is fitted to the kt series and used to produce the forecasts. In the following 

subsections we describe these structural change and unit-root tests in more detail. 

 

3.1. Testing for a change in the trend 

 

As mentioned above, we use the HLT test for the existence of a structural 

change in the trend of the mortality index kt when it is not known a priori if the series 

has a unit-root or not. The date of the break, if present, is estimated from the available 

sample. The test is relatively simple to implement since it only requires estimating the 

following two linear regression models by least squares: 

 

 kt = α + β t + γ DTt(τ) + ut ,   t = 1, …, T, (8) 

 

and 

 

 ∆kt = β  + γ DUt(τ) + ut ,   t = 2, …, T, (9) 

 

where the change dummy variables are defined as DTt(τ) = t-TB if t > TB and DTt(τ) = 

0 if t ≤ TB, DUt(τ) = 1 if t > TB and DUt(τ) = 0 if t ≤ TB, with TB = [τT] denoting the 

possible trend change date, and τ the associated change date fraction with τ ∈ (0, 1). 



 11

Equation (8) corresponds to the trend-stationary case with stationary shocks ut and kt 

fluctuating around a linear trend with slope β subject to a change of magnitude γ 

occurring at a given date TB. Equation (9) corresponds to the case where the shocks to 

kt are non-stationary with a unit-root, so that the first-differences, ∆kt = kt - kt-1, 

fluctuate around the mean, given by the drift parameter β which is also subject to a 

change of magnitude γ occurring at date TB. In this last equation, the shocks ut to ∆kt 

are also stationary. In both equations, the null hypothesis of no change in the trend 

slope corresponds to H0: γ = 0.
3
 

If kt is known to be trend-stationary, a valid test for the presence of a structural 

change in the trend slope can be based on the t-statistic for testing H0 in equation (8), 

which we denote as t0(τ). To allow for serial correlation in the error term, an auto-

correlation robust t-statistic must be used. Since the change date τ is not known a 

priori, but may be inferred from the data itself, the test statistic is computed by the 

maximum of the sequence of t0(τ) statistics for all possible change fractions τ as: 

 

 t0
*
 = sup τ∈Λ | t0 (τ ) | (10) 

 

where the supremum is taken over a set Λ = [τL , τU ], with 0 < τL < τU < 1. HLT 

suggest setting the trimming parameters τL and τU equal to 0.1 and 0.9 respectively. 

On the other hand, if it is known that kt is difference-stationary, one should 

use the corresponding t-statistic from equation (9), which we denote as t1 (τ). As in 

the previous case, given that the change date is not known a priori, the test statistic is 

given by 

 

 t1
*
 = sup τ∈Λ | t1 (τ ) |. (11) 

 

The change fractions at which the test statistics t0
*
 and t1

*
 attain their maximum will 

be denoted as τ0
*
 and τ1

*
, respectively. 

                                                           
3
 The model described here corresponds to Model A in HLT. It is straightforward to allow for a 

simultaneous change in the slope and the level of the trend (Model B in HLT) by including an extra 

dummy variable in each regression. However, if the mortality index does not show any abrupt changes 

in its level, it is not necessary to consider such a model.  
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Finally, the HLT test, which is valid for both unit-root and trend-stationary 

processes, is computed as a weighted average of the t0
*
 and t1

*
 tests: 

 

 tλ
*
 = λ t0

*
 + m (1-λ ) t1

*
 (12) 

 

with the weight λ given by  

 

 λ = exp[ - ( 500 S0
*
 S1

*
 )
2
 ] (13) 

 

and S0
*
 and S1

*
 denoting the KPSS (see Kwiatkowski et al., 1992) stationary test 

statistics calculated from the OLS residuals of equations (8) and (9) when evaluated 

at the τ0
*
 and τ1

*
 change dates respectively.

4
 As shown by HLT, the 5% asymptotic 

critical value of tλ
*
 equals 2.563 provided the constant m is set equal to 0.853. 

 

3.2. Unit-root test 

 

As mentioned above, standard unit-root tests have several shortcomings when 

it is not known a priori if a structural change has occurred or not. However, as shown 

in HHLT, the HLT tλ
*
 structural change test in (12) can be used as a pre-test. If it 

rejects the null hypothesis of no change, an optimal test for a unit-root in the presence 

of a structural change should be used. If it does not reject, then an optimal unit-root 

test without allowing for a structural change should be used. We now describe these 

unit-root tests in more detail. 

For the case where a structural change is detected with the HLT test, the 

estimated change fraction using the first-differenced model, τ1
*
, is used to estimate 

model (8) by GLS as in Perron and Rodriguez (2003). For τ = τ1
*
, equation (8) can be 

rewritten as 

 

 kt = Xt(τ1
*
) θ0 + ut ,   t = 1, …, T, (14) 

                                                           
4 As shown in HLT, λ converges asymptotically to 1 if the series is trend-stationary or to 0 if it is 
difference-stationary at sufficiently fast rates so that the correct test statistic, t0

*
 or t1

*
 respectively, is 

selected. 
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where Xt (τ1
*
) = (1, t, DTt (τ1

*
)) and θ0 = (α , β , γ )´. The GLS estimation is 

implemented by estimating with OLS the following quasi-difference transformation 

of equation (14): 

 

 kc,t = Xc,t(τ1
*
) θ0 + uc,t ,   t = 1, …, T, (15) 

 

where kc,t = kt - ρ kt-1 and Xc,t (τ1
*
) = Xt (τ1

*
) - ρ Xt-1 (τ1

*
) for t = 2, …, T, kc,t = k1 and 

Xc,t (τ1
*
) = X1 (τ1

*
) for t = 1, and ρ = 1- c/T where c is the quasi-difference parameter. 

The value of c can be chosen according to a local power criterion as explained in 

HHLT. Let ˆ
cθ denote the OLS estimator of θ0 in equation (15) and tu% = kt - Xt(τ1

*
) ˆ

cθ  

the residuals. The unit-root test is finally obtained by estimating the following ADF 

regression: 

 

 
1 ,

1

, 2,...,
p

t t j t j p t

j

u u u e t p Tφ δ− −

=

∆ = + ∆ + = +∑% % % . (16) 

 

The number of lags p can be chosen by a modified Akaike criterion (see HHLT for 

details). Values of c and critical values for several significance levels and estimated 

change fractions needed for the implementation of this test can be found in HHLT 

and Carrion-i-Silvestre et al. (2008). 

When no structural change is found by the HLT test, a unit-root test without 

allowing for a change should be used such as the ADF-GLS optimal test proposed by 

Elliott et al. (1996). This test is computed as above but with the following two 

modifications: a) the structural change dummy variable is excluded from the Xt(τ1
*
) 

vector and b) the optimal value of c in this case equals 13.5. 

 

4. EMPIRICAL APPLICATION 

 

In this section, the methodology proposed above is illustrated by an 

application to the following 18 developed countries: Austria, Belgium, Canada, 
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Denmark, England and Wales, Finland, France, Ireland, Italy, Japan, Netherlands, 

Norway, Portugal, Spain, Switzerland, Sweden, United States of America, and West 

Germany. We use time-series data for the number of deaths, txD , , and exposure-to-

risk, txE , , by single year of age, sex, and calendar year from 1950 until the most 

recent available year.
5
 Data were obtained from the Human Mortality Database 

(HMD) (University of California and Max Planck Institute).
6
  

We begin by applying the Brouhns et al. (2002) extension of the Lee-Carter 

method described in Section 2 to obtain estimates of the model parameters and the 

mortality index series for the male and female populations in each country. Next, we 

apply the procedure proposed in Section 3 to test for the presence of structural 

changes and unit-roots in the estimated mortality trends. Finally, we illustrate how 

these results can be used to arrive at appropriate forecasting models by considering 

the case of male mortality in Portugal. We compare the resulting mortality and life 

expectancy forecasts with those obtained using alternative models. 

  

4.1. Mortality index estimation 

 

The estimated mortality indices tk  for the male and female populations in 

each country are plotted in Figures 1.a-c and confirm the downward trend in mortality 

over time observed in all countries. A more detailed visual inspection of the graphs 

also seems to suggest that after the mid-1970s, the rate of decline, especially for male 

mortality, might have become more accentuated in a number of countries. Examples 

of perceptible structural changes can be found in the mid-1970s for Belgium, Canada, 

and West Germany, mid-1980s for Italy, Norway, and Sweden, mid-1990s for 

Denmark, and around 2000 for Ireland and Netherlands.  

However, as explained in the previous section, in the eventual possible of a 

unit-root, there is a risk that such apparent structural changes may be nothing more 

                                                           
5
 The latest available years are 2005 for Austria, Canada, and U.S.A., 2006 for Belgium, England & 

Wales, France, Ireland, Italy, Netherlands, Spain, and West Germany, and 2007 for Denmark, Finland, 

Japan, Norway, Portugal, Switzerland, and Sweden. For West Germany data are available only since 

1956. 
6
 The Ex,t are based on annual population estimates with a small correction that reflects the timing of 

deaths during the interval (see HMD 2007). 
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than illusions in the data.
7
 Next, we present formal and valid tests for the genuine 

presence of structural changes in the mortality indices. 

 

4.2. Structural change and unit-root tests 

 

The traditional Box-Jenkins approach to forecasting would begin by analysing 

the stationarity of each series. For all the estimated tk , the corresponding empirical 

autocorrelation functions approach zero very slowly while, on the contrary, the 

empirical partial autocorrelation functions cut off abruptly at lag one.
8
 These are 

typical behaviours of non-stationary unit-root series and, according to the usual Box-

Jenkins approach, a clear indication that the 
tk  series should be first-differenced, 

leading therefore to ARIMA(p,1,q) forecasting models. However, as explained above, 

this analysis is not valid in the presence of structural changes. 

We now follow the sequential approach described in Section 3 to identify the 

correct forecasting model in the potential presence of a structural change. The results 

of the different structural change and unit-root tests for males and females are 

summarized in Table 1.  

We begin by looking at the results of the t0
*
 and t1

*
 structural change tests.

9
 

For males, according to both tests, there is evidence of a structural change in the trend 

slope in all countries, except Finland and Spain. In these two countries, evidence is 

favourable to a structural change only in the case of the t0
*
 test. The results of the 

robust tλ* test confirm the presence of a structural change in all countries except 

Finland and Spain. 

For females, the situation is quite different. Evidence is in general favourable 

to a structural change in the trend slope when using the t0
*
 test, except for Finland, 

Spain, and Switzerland. However, for the t1
*
 test, which is valid only if a unit-root is 

present, evidence of a structural change is favourable only for Austria, Ireland, and 

                                                           
7
 The problem of spurious breaks was first raised, from a graphical perspective, by Hendry and Neale 

(1991). A statistical explanation of the phenomena was given by Nunes et al. (1995, 1996). 
8
 The same behaviour is obtained after removing a linear trend from the kt series. 
9 Since there is no reason or evidence pointing to simultaneous changes in the level and slope of the 

downward trend in mortality, the structural change tests are performed using model A in HLT, which 

considers only a change in the trend slope. 
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Japan. The results of the tλ* test confirm the presence of a structural change only in 

Austria, Ireland, Italy, Japan, and Sweden. 

The next step consists of testing for a unit-root. In every case that the result of 

the tλ* test points to a structural change, the appropriate unit-root test to use is the 

ADF-GLS test allowing for a change and denoted as ADF-GLS-break in Table 1.  For 

males, except for Finland and Spain, this is the appropriate unit-root test to use, while 

for females it should be used only for Austria, Ireland, Italy, Japan, and Sweden. The 

ADF-GLS test not allowing for a break should be used in all the other cases. In 

almost all cases, the evidence supports the unit-root hypothesis. The few exceptions 

are the cases of males in Denmark and females in Japan and Sweden. 

Finally, for the cases where in the first step a structural change was detected, 

the date when that change occurred is estimated in accordance with the conclusion of 

the appropriate unit-root test. Wherever a unit-root is present, the selected estimator 

of the structural change date corresponds to the date where the t1
*
 statistic in (11) 

attains its maximum. In the few cases where a unit-root is rejected, the selected 

estimator of the structural change date corresponds to the date where the t0
*
 statistic in 

(10) attains its maximum. These dates are presented in the last column of Table 1. 

Although not presented, for almost every case where a structural change is identified, 

the corresponding estimated magnitude of the change in the trend slope, given by γ in 

(8) or (9), is negative. The only exceptions are the cases of males and females in 

Japan and females in Sweden. 

In summary, there is significant evidence supporting the presence of structural 

changes in the evolution of male mortality associated with a more accentuated decline 

in the overall mortality rate in recent years for almost every country considered. In 

contrast, evidence of structural changes in female mortality is found only for a few 

countries. It is interesting to note that in the case of the European countries these 

structural changes have all taken place in the second half of the sample, that is, after 

the mid-1970s. The evidence of a unit-root found in almost every case considered 

implies that the uncertainty regarding the future evolution of mortality will increase 

with the forecast horizon. 
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4.3. Forecasting Portuguese male mortality 

 

To illustrate the impact of the results of the unit-root and structural change 

tests obtained in the previous sub-section in terms of mortality and life expectancy 

forecasts, we consider as an example the case of the Portuguese male population. 

According to the results of those tests (see Table 1), the adequate forecasting model 

to consider is an ARIMA(p,1,q) allowing for a change in the drift in 1996, that is, an 

ARMA(p,q) model for the first-differences of kt including as deterministic regressors 

a constant term and a step dummy variable as in equation (9). The orders p and q of 

this model are identified by analysing the residual autocorrelation functions, and 

using the Ljung-Box Q-tests and the Akaike and Schwarz information criteria. The 

final estimated model is the following ARIMA(0,1,1) model allowing for the 

structural change in 1996: 

 

 ,53.0  with  ,72.137.1 1

1996

1 −− −=+−−=− ttttttt uuDUkk εε  (17) 

 

where 1996

tDU  = 1 if t > 1996 and 1996

tDU  = 0 if t ≤  1996, and tε  is a white noise. 

More detailed estimation results for this model appear in the first column of Table 2. 

Using this model we obtain forecasts of the mortality index tk  for the period 2008-

2050. These are presented in Figure 2 together with the corresponding 95% 

confidence bands.
10
 As expected, the model predicts a decline in the mortality index 

at a pace that is consistent with the more pronounced decline in mortality in the final 

years of the 20
th
 century and beginning of the 21

st
 century. The fact that the 

confidence bands widen is a direct consequence of the unit-root non-stationarity of 

this model.  

To better understand the impact of allowing for a structural change in the 

mortality index by following the approach proposed in this paper, we also considered 

models estimated with different specifications of the structural change and the unit-

                                                           
10
 The computed confidence intervals only account for the variability coming from the fitted ARIMA 

model: parameter estimation errors and future shocks. Other sources of variability could be allowed for 

by using bootstrap methods as in Brouhns et al. (2005), Koissi et al. (2006), and Renshaw and 

Haberman (2008). 
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root. Estimation results for these models also appear in Table 2. In Figure 5 we plot 

the resulting point forecasts for the period 2008-2050 for some of these models. The 

optimal model forecasts the greater decline in the mortality index. 

We begin by analysing the random walk with drift model, which was found to 

be the optimal ARIMA model for 
tk  in the original work of Lee and Carter for the 

US population and in many other applications of their method. This model appears in 

the second column of Table 2. However, according to the residual autocorrelation 

functions and the Ljung-Box Q-statistics, this model does not fit well the Portuguese 

mortality index. The unit-root model without allowing for a structural change that 

best fits the mortality index series is an ARIMA(1,1,0) model, which appears in the 

third column of Table 2.
11
 The corresponding forecasts from this model appear in 

Figure 3.  The first thing to note is that, in this model, the forecasted rate of decline in 

mortality is, by construction, basically given by the average rate of decline during the 

whole estimation period. Therefore, the more accentuated decline in mortality since 

the end of the 20
th
 century until the end of the estimation sample is not translated into 

the future projections. Consequently, the projected decline in mortality is much less 

when compared with the optimal model, which allowed for a structural change in 

1996. Another important difference is that the confidence bands for the projected 

mortality index are wider for this model. This is a consequence of the poorer fit of 

this model relative to the optimal structural change model.  

We also considered trend-stationary models. When no break in trend was 

allowed for, the analysis of the residuals suggested an ARMA(1,1) model. However, 

this model resulted in an auto-regressive root very close to 1, which basically 

confirms the previously obtained unit-root tests results. Because the model also 

includes a linear trend, the estimated near unit-root would, in fact, lead to a quadratic 

trend. We conclude that this model is not able to adequately describe the mortality 

index. 

Finally, we have considered a trend-stationary model allowing for a change in 

the trend slope as in equation (8). According to the t0
*
 test statistic, the estimated 

                                                           
11 An ARIMA(0,1,1) model was also reasonable but did not fit the model as well. The point forecasts 

of these models were very similar but with the simple random walk with drift model generating wider 

confidence bands. 
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break date is in 1973. The best model in this case is an ARMA(1,0) including as 

deterministic regressors a constant term, a linear trend, and a change dummy defined 

as 1973

tDT  = t - 1973 if t > 1973 and 1973

tDT  = 0 if t ≤ 1973. Estimation results are 

presented in the fourth column of Table 2. The corresponding mortality index 

forecasts are graphed in Figure 4. The forecasted decline in mortality is also not as 

great as in the optimal forecasting model. Regarding the confidence bands, as 

expected, these do not grow as the forecasting horizon grows, since this model 

assumes stationarity around a broken trend. Thus, for longer horizons, this model will 

produce forecast intervals with the least amplitude, but obviously underestimating 

future uncertainty, given the results of the sequential testing procedure that led to the 

optimal forecasting model. 

The mortality index forecasts are also used to produce forecasts of the age-

specific mortality rates ( )txµ  using the previously estimated xα  and xβ  in equation 

(4). From these, we obtain forecasts for life expectancy at birth and at age 65 for each 

model. These appear in Table 2 (see also Figure 6). In accordance with the forecasts 

obtained for the mortality index, the optimal model with a unit-root and a change in 

1996 gives the highest projected gains in life expectancy during the next four 

decades. Life expectancy at birth is expected to increase by almost 9 years and life 

expectancy at age 65 by 6 years. The predicted value for life expectancy at birth in 

2050 is 84.8 years with a 95% confidence interval of 84.0 to 85.6 years. Life 

expectancy at age 65 is predicted to grow from 16.7 years in 2007 to 22.7 years in 

2050 with a ± 0.6 years 95% confidence interval. Also, in agreement with the results 

obtained regarding the confidence bands for the mortality forecasts, the amplitude of 

the confidence bands for the 2050 life expectancy forecasts is substantially smaller 

for the optimal model than for the unit-root models without allowing for a structural 

change, but larger when compared with the trend-stationary model with a break. 

 

5. CONCLUSIONS 

 

In this paper we propose a new methodology to forecast future mortality and 

life expectancy in the possible presence of a structural change in the context of the 
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Lee-Carter model. Specifically, the results of tests for a change in the trend of the 

general level of mortality and of the presence of a unit-root are used to identify the 

appropriate ARIMA model to be estimated and used to carry out the projections. 

We apply the proposed procedure to post-1950s time-series mortality data for 

18 developed countries. We find significant evidence of structural changes in the rate 

of decline in the overall male mortality rate for almost every country considered. 

These are associated with a more accentuated decline in mortality in recent years. In 

contrast, female mortality decline has remained stable for the majority of the 

countries. We also show, by studying the case of Portuguese male mortality, that 

accounting for such structural changes in a forecasting model can lead to major 

impacts in mortality and life expectancy forecasts over the next decades. 

 The sequential testing approach to detect unit-roots and structural changes was 

applied in the context of the typical Lee-Carter model. However, it should be possible 

to extend it to other variants of this model that allow, for instance, more than one 

latent mortality index, so as to capture dissimilar evolutions of mortality for different 

ages. Another extension of the proposed approach would be to consider the 

possibility of more than one structural change. These are left for future research. 
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Table 1. Structural change and unit-root tests 

Males    

 Structural Change Tests Unit-Root Tests Conclusion 

Country t0* t1* tλ* ADF-GLS 
ADF-GLS-

break 
I(0)/I(1) 

Break 

Date 

Austria 17.21** 4.85** 4.49** -0.93 -1.83 I(1) 1983 

Belgium 15.91
**
 3.70

**
 3.16

**
 -0.64 -1.72 I(1) 1976 

Canada 14.97
**
 5.59

**
 4.77

**
 -0.26 -2.01 I(1) 1975 

Denmark 26.10** 7.40** 10.83** -0.46 -3.24*** I(0) 1994 

England & Wales 17.40
**
 5.01

**
 4.27

**
 -0.64 -1.90 I(1) 1979 

Finland 8.98
**
 2.23 1.90 -1.41 -1.70 I(1) - 

France 12.41** 3.13** 3.93** -1.15 -2.39 I(1) 1985 

Ireland 10.04
**
 8.02

**
 6.81

**
 -1.02 -1.40 I(1) 1999 

Italy 18.10
**
 5.80

**
 4.95

**
 -0.95 -2.51 I(1) 1983 

Japan 8.92** 3.44** 2.94** -0.80 -1.41 I(1) 1955 

Netherlands 9.78** 5.37** 4.58** -0.68 -1.18 I(1) 2000 

Norway 19.54
**
 5.64

**
 4.81

**
 -1.27 -2.00 I(1) 1988 

Portugal 8.32** 3.77** 3.18** -0.10 -1.83 I(1) 1996 

Spain 3.49** 2.77 2.32 -2.24 -3.20*** I(1) - 

Switzerland 10.03
**
 4.00

**
 3.41

**
 -0.92 -1.79 I(1) 1990 

Sweden 22.86** 5.35** 4.83** -1.21 -1.66 I(1) 1988 

United States 14.58** 4.55** 4.04** -0.78 -2.79 I(1) 1968 

West Germany 13.72
**
 4.88

**
 4.16

**
 -0.83 -1.73 I(1) 1975 

 

Females    
 Structural Change Tests Unit-Root Tests Conclusion 

Country t0* t1* tλ* ADF-GLS 
ADF-GLS-

break 
I(0)/I(1) 

Break 

Date 

Austria 12.82** 3.10** 2.66** -0.94 -1.42 I(1) 1983 

Belgium 7.69
**
 2.00 1.71 -1.43 -2.00 I(1) - 

Canada 5.23** 1.97 1.68 -1.77 -2.80 I(1) - 

Denmark 6.46** 2.55 2.17 -1.25 -2.31 I(1) - 

England & Wales 5.90
**
 2.32 2.19 -1.41 -2.05 I(1) - 

Finland 2.44 1.91 1.63 -1.53 -1.83 I(1) - 

France 3.97** 1.40 1.42 -1.78 -2.61 I(1) - 

Ireland 7.12
**
 5.22

**
 4.46

**
 -1.74 -1.38 I(1) 1999 

Italy 12.05** 2.61 5.41** -0.78 -1.77 I(1) 1983 

Japan 5.75** 4.26** 4.19** -1.46 -4.32*** I(0) 1955 

Netherlands 6.52
**
 1.81 1.54 -1.16 -1.80 I(1) - 

Norway 4.29** 1.57 1.34 -2.24 -2.57 I(1) - 

Portugal 9.86** 2.88 2.46 -0.43 -2.20 I(1) - 

Spain 1.59 1.45 1.24 -3.02 -2.96 I(1) - 

Switzerland 1.94 1.60 1.36 -1.92 -2.28 I(1) - 

Sweden 5.19** 1.44 3.35** -1.00 -3.51*** I(0) 1984 

United States 3.76
**
 1.96 1.67 -1.50 -2.05 I(1) - 

West Germany 7.26** 2.34 1.99 -1.56 -2.05 I(1) - 

Notes: ** denotes rejection of the null hypothesis of no structural change at the 5% level. *** denotes 

rejection of the null hypothesis of a unit-root at the 5% level. I(0) denotes trend-stationarity and I(1) denotes a 

unit-root process. The following critical values were used: 2.56 for t0
* and tλ

*, and 3.00 for t1
* (Table 1 in 

HLT); -3.19 for ADF-GLS (Table I in Elliot et al., 1996); and a set of critical values that depend on the break 

fraction (between -3.45 and -3.09) for ADF-GLS-break (Table 1 in Carrion-i-Silvestre et al., 2008). 
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Table 2. Estimated forecasting models for the Portuguese male mortality index 

 

 (1) 

ARIMA(0,1,1) 

break in 1996 

(2) 

ARIMA(0,1,0) 

no break 

(3) 

ARIMA(1,1,0) 

no break 

(4) 

ARMA(1,0) 

break in 1973 

Constant 
-1.37** 

(0.16) 

-1.70** 

(0.35) 

-1.69** 

(0.23) 

38.57** 

(2.90) 

1996

tDU  
-1.72** 

(0.38) 
   

t     
-0.92** 

(0.16) 

1973

tDT     
-1.12** 

(0.21) 

)1(AR    
-0.40** 

(0.13) 

0.59** 

(0.13) 

)1(MA  
-0.53** 

(0.12) 
  

 

 

Log-

Likelihood 
-121.65 -132.65 -127.86 -125.74 

AIC 4.45 4.77 4.64 4.63 

SBC 4.56 4.81 4.71 4.78 

Q(4) p-value 0.509 0.011 0.840 0.113 

No. Obs. 56 56 56 56 

Forecasts of life expectancy at birth   

2030 
80.9 

[80.2 , 81.7] 

78.7 

[76.8 , 80.5] 

78.7 

[77.4 , 79.9] 

78.8 

[78.2 , 79.2] 

2050 
84.8 

[84.0 , 85.6] 

81.1 

[78.7 , 83.3] 

81.1 

[79.5 , 82.6] 

81.6 

[81.1 , 82.1] 

Forecasts of life expectancy at age 65   

2030 
20.0 

[19.5 , 20.5] 

18.5 

[17.3 , 19.7] 

18.5 

[17.7 , 19.3] 

18.5 

[18.2 , 18.9] 

2050 
22.7 

[22.1 , 23.3] 
20.1 

[18.5 , 21.6] 
20.1 

[19.1 , 21.1] 
20.5 

[20.1 , 20.8] 

 

Notes: ** denotes significance at the 1% significance level. Standard errors appear in 

parentheses. 95% forecast confidence intervals appear in square brackets. 
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Figure 1.a. Estimated overall mortality indices 
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Figure 1.b. Estimated overall mortality indices (continued) 

 

 

 

 

 

 

 

 



 29

 

 

 

 

Portugal

-100

-50

0

50

100

1950 1960 1970 1980 1990 2000

Males

Females

Spain

-100

-50

0

50

100

1950 1960 1970 1980 1990 2000

Males

Females

Switzerland

-100

-50

0

50

100

1950 1960 1970 1980 1990 2000

Males

Females

Sweden

-100

-50

0

50

100

1950 1960 1970 1980 1990 2000

Males

Females

United States

-100

-50

0

50

100

1950 1960 1970 1980 1990 2000

Males

Females

West Germany

-100

-50

0

50

100

1956 1966 1976 1986 1996 2006

Males

Females

 
 

 

Figure 1.c. Estimated overall mortality indices (continued) 
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Figure 2. Portuguese males mortality index (1950-2007) and forecasts from an 

ARIMA(0,1,1) with a break in drift in 1996 (2008-2050) 
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Figure 3. Portuguese males mortality index (1950-2007) and forecasts from an 

ARIMA(1,1,0) with no break (2008-2050) 
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Figure 4. Portuguese males mortality index (1950-2007) and forecasts from an 

ARMA(1,0) with a break in trend slope in 1973 (2008-2050) 
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Figure 5. Portuguese males mortality index (1940-2007) and forecasts for several 

models (2008-2050) 
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Figure 6. Portuguese males life expectancy at birth (1950-2007) and forecasts from an  

ARIMA(0,1,1) with a break in drift in 1996 (2008-2050). 

 

 

 

 


